
Design of Distributed Calculation Scheme using

Network Address Translation for Ad-hoc

Wireless Positioning Network

Jumpei Kajimura?, Shigemi Ishida?, Shigeaki Tagashira??, and Akira Fukuda?

?ISEE, Kyushu University,
Motooka 744, Nishi-ku, Fukuoka-shi, Fukuoka, 819-0395 Japan

??Faculty of Informatics, Kansai University,
Ryozenji-cho 2-1-1, Takatsuki-shi, Osaka, 569-1095 Japan

Abstract. We have developed an ad-hoc wireless positioning network
(AWPN) to realize on-demand indoor location-based services [10]. This
paper extends our AWPN to handle huge number of localization re-
quests. In AWPN, WiFi APs measure received signal strength (RSS)
of WiFi signals and send the RSS information to a localization server
via a WiFi mesh network. The maximum number of WiFi devices is
therefore limited by computational resources on the localization server.
We push this limit by introducing a new distributed calculation scheme:
we use the MapReduce computation framework and perform map pro-
cesses on APs and reduce processes on localization servers. We also uti-
lize a network router capable of network address translation (NAT) for
shu✏e processes to provide scalability. We implemented and evaluated
our distributed calculation scheme to demonstrate that our scheme al-
most evenly distributes localization calculations to multiple localization
servers with approximately 26% variations.

Keywords: Ad-hoc wireless positioning network (AWPN), MapReduce,
distributed calculation, network address translation (NAT).

1 Introduction

In recent years, smartphones have become prevalent, which pushes increasing at-
tention to location-based services. Location-based services are mainly developed
for outdoor use because the global positioning system (GPS) is widely available
in outdoor environments. Indoor localization is now more required to extend
location-based services to indoor environments.

We are developing a WiFi ad-hoc wireless positioning network (AWPN) to
realize on-demand indoor location-based services that are used in one-time use
scenarios such as a navigation in an exhibition event. The AWPN is a localization
system built on a WiFi mesh network. In AWPN, WiFi access points (APs)
capture IEEE802.11 ProbeRequest frames sent from a WiFi device and measure
received signal strength (RSS) of the frames. The RSS-data is then sent to a
localization server via a WiFi mesh network to estimate the device location.

© Springer International Publishing AG 2017
This is the author's version of the work. The final publication is available at Springer via
https://doi.org/10.1007/978-3-319-68282-2_3

2 Kajimura, J., Ishida, S., Tagashira, S., Fukuda, A.

When we use AWPN in a large indoor environment, the localization server
receives huge number of RSS-data, which increases computational requirements
on the localization server. Large-scale AWPN consists of many WiFi APs that
receive signals from many WiFi devices. Although single localization calcula-
tion completes in few milliseconds [10], localization calculations for hundreds
of WiFi devices require considerable time. Especially, smartphones send many
ProbeRequest frames every second, which drastically increases the number of
localization calculations.

To address the calculation load problem, the MapReduce distributed calcu-
lation systems [2, 3] such as Hadoop [21] have been widely adopted. MapReduce
systems, however, are ine�cient for AWPN localization calculations because
computational resource for distribution is not negligible. MapReduce systems
consists of three processes: map process in which calculation tasks are associ-
ated with specific hash values named keys, shu✏e process in which map tasks
are distributed to calculation nodes based on the keys, and reduce process in
which mapped data are aggregated to calculate final results. The MapReduce
e↵ectively distributes calculation load onto calculation nodes when the map and
reduce processes are heavier than the shu✏e process. In AWPN, localization
calculation itself is lightweight computation. Shu✏e processes and data commu-
nications between calculation nodes for shu✏ing are not negligible in AWPN.

As a new solution for the calculation load problem in AWPN, this paper
presents a distributed calculation scheme such that MapReduce processes are
distributed to APs and localization servers. In the proposed calculation scheme,
APs perform map processes and localization servers perform reduce processes.
The APs measure the RSS of a ProbeRequest frame and determine the localiza-
tion server to send the RSS-data based on the information in the ProbeRequest
frame. RSS-data, generated on multiple APs, of an identical ProbeRequest frame
is therefore collected on the same localization server.

Practically, we utilize a network router for shu✏e processes to easily sup-
port scalability. The required number of localization servers is dependent on
the scale of AWPN and the number of WiFi devices to be localized. To avoid
reconfiguration of WiFi APs in the environment when the number of localiza-
tion servers changes, we use network address translation (NAT) on a network
router to forward RSS-data to localization servers. The router is specified as a
default gateway in AWPN to collect all the RSS-data on the router. RSS-data
is forwarded to a specific localization server based on a key value in the RSS-
data. The number change of localization servers only requires reconfiguration of
address translation rules, which is defined in the network router.

Note that our approach is another form of MapReduce implementation with a
simple feature set. Our distributed calculation scheme does not provide features
such as dynamic scaling and fault tolerance that are widely available in orig-
inal MapReduce systems. These features are often insignificant in localization
systems for location-based services.

To demonstrate the e↵ectiveness of the proposed distributed calculation
scheme, we conducted experimental evaluations in a Kyushu University building.

Design of Dist. Calc. Scheme using Network Address Translation for AWPN 3

RSS=–48RSS=–52

RSS=–58

RSS=–55

WiFi AP

Core AP

WiFi Device

Localization Server

Fig. 1. Overview of ad-hoc wireless positioning network (AWPN)

The experimental evaluations reveal that the proposed distributed calculation
scheme successfully distributed RSS-data to localization servers with imbalance
of 26%.

The remainder of this paper is structured as follows. Section 2 briefly de-
scribes AWPN and shows requirements of a distributed calculation scheme in
AWPN. In Section 3, we present a distributed calculation scheme using net-
work address translation for AWPN, followed by implementation in Section 4.
In Section 5, we conducted experimental evaluations of the proposed distributed
calculation scheme. Finally, Section 6 concludes the paper.

2 Distributed Calculation in Ad-hoc Wireless Positioning

Network

2.1 Ad-hoc Wireless Positioning Network

Ad-hoc Wireless Positioning Network (AWPN) is a WiFi mesh network capa-
ble of localizing WiFi devices [17]. Figure 1 depicts an overview of AWPN. To
construct AWPN, we install multiple WiFi APs into a localization target area
and connect a localization server to an AP named a core AP. The network is
automatically constructed with multi-hop links between APs. APs detect a WiFi
signal sent from a WiFi device in the localization target area and measures re-
ceived signal strength (RSS) of the signal. The RSS-data and the WiFi device
address are then sent to a localization server. The localization server calculates
the device location using multilateration with the RSS-data sent from multiple
APs.

In AWPN, calculation load becomes heavier as the number of RSS-data in-
creases because the localization server performs all the calculations. Distributed
calculation is an e↵ective solution to address this calculation load problem.

There are two requirements for distributed calculation in AWPN.
The first requirement is independence between AWPN scale and system con-

figurations. When we extend a localization target area, we need to add APs and

4 Kajimura, J., Ishida, S., Tagashira, S., Fukuda, A.

 10

 100

 1000

 10000

 100000

 100 1000 10000 100000

P
ro

ce
ss

in
g
 T

im
e

[m
s]

Number of RSS-data

Fig. 2. RSS-data processing time on MongoDB

localization servers to process increased number of RSS-data. Changing system
configurations such as AP configuration parameters, AP firmware, and localiza-
tion server program requires much cost because there are hundreds of APs and
localizations servers in AWPN.

The second requirement is small overhead. In large-scale AWPN, localization
servers perform huge number of localization calculations because many WiFi
devices transmit ProbeRequest frames more than once per second. Localization
calculation is not a heavy task and is finished in few milliseconds [10]. Overhead
for calculations including RSS-data reception should be minimized.

Figure 2 shows the time required for RSS-data processing on MongoDB dis-
tributed database [18]. We collected RSS-data using AWPN installed in our lab-
oratory and inserted the RSS-data into MongoDB. On MongoDB, we grouped
RSS-data by sender WiFi devices and counted the number of RSS-data in each
group. We repeated data processing for 100 times and averaged the processing
time. Figure 2 indicates that the processing time greatly increased as the num-
ber of RSS-data increased when the number of RSS-data was more than 5,000.
We only counted the number of RSS-data in this example. We can confirm that
overhead to retrieve data from database is considerable when we process huge
number of RSS-data.

2.2 Related Works

For many high computation applications, MapReduce-based distributed calcu-
lation systems [2, 3] are widely adopted to process high volume of data. For ex-
ample, the MapReduce systems are utilized in machine learning as well as data
mining [9, 8, 15], clustering [22], pairwise document similarity calculation [6],
and genome analysis [16]. Also there are many MapReduce extensions such as
MRPGA [13], Twister [4], DELMA [7], Tiled-MapReduce [1], SpatialHadoop [5],
and epiC [12].

Design of Dist. Calc. Scheme using Network Address Translation for AWPN 5

The MapReduce systems, however, su↵er from high overhead for localization
calculation in AWPN because localization calculation is a lightweight computa-
tional task. In the MapReduce systems, RSS-data is first stored in a distributed
database. RSS-data is then analyzed and grouped by sender devices in map
processes to calculate device location. In reduce processes, device location is cal-
culated using the grouped RSS-data. A node called a master node distributes
map and reduce processes to calculation nodes. In AWPN, the load of the mas-
ter node becomes significant when processing huge number of RSS-data. Data
reading from the distributed database in map and reduce processes is another
overhead in AWPN because results of map and reduce processes are stored in
distributed nodes.

Kafka [14] is a distributed messaging system for realtime data processing,
which is another form of distributed calculation systems. In Kafka, producers
generate messages and send the messages to servers named brokers, which pro-
vide distributed data queues. Application servers, named consumers, retrieve
messages from brokers at their own rate to process the messages. When we ap-
ply Kafka to AWPN localization calculations, APs send RSS-data to brokers
and localization servers consume the RSS-data. Using a gateway service, Kafka
easily adapts to the change of the number of localization servers. This pub-
lish/subscribe model is also used in several IoT middlewares such as DDS [19]
and DPWS [11].

Although distributed data processing schemes using a publish/subscribe model
can perform localization calculations with high flexibility, a broker requires
higher computational resources compared to our approach. Data storage on a
broker is also required to safely process stream data. Our approach only requires
network routers with su�cient network capacity.

3 Distributed Calculation Scheme for AWPN

3.1 Overview

Figure 3 shows an overview of our distributed calculation scheme using address
translation. Our key idea is to distribute MapReduce processes to APs, net-
work router, and localization servers. An AP receives a ProbeRequest frame
and measures received signal strength (RSS) of the frame. The AP performs
a map process; the AP calculates a key value based on the information in the
ProbeRequest frame. The RSS value as well as key value is sent to a network
router as RSS-data. When the network router receives RSS-data, the router per-
forms a shu✏e process; RSS-data is sent to the localization server associated
with the key value in the RSS-data. The RSS-data with the same key values is
therefore collected to the same localization server. The localization server then
performs a reduce process, i.e., calculates location of a WiFi device.

Following subsections describe details of map and shu✏e processes.

6 Kajimura, J., Ishida, S., Tagashira, S., Fukuda, A.

!"#$!"$%$%&!' !(#$!')$%$%&!'

!%$%$%$!

!%$%$%$#
!"#$%&

'"()*+,)-"./0%&1%&23+4+/562

07#8%

9):
!%;#(%

Fig. 3. Overview of distributed calculation scheme using network address translation
for AWPN

3.2 Map Process

In a map process, an AP calculates a key value based on the information in a
ProbeRequest frame sent from a WiFi device. An AP retrieves the information
below to calculate a key value:

– The MAC address of a source WiFi device
– The sequence number of a ProbeRequest frame
– The reception time of a ProbeRequest frame

The key values are associated with IP addresses in an address space not
used in a WiFi mesh network. An AP sends RSS-data to the IP address as-
sociated with a calculated key value. We configure the WiFi mesh network to
use a network router as a default gateway. All the RSS-data is therefore sent
to the network router. In Fig. 3, for example, RSS-data sent to an address
in 10.0.0.0/24 address space is actually sent to the network router because
10.0.0.0/24 is outside of 172.17.0.0/16 network.

Key value calculation algorithm should be simple enough because APs have
limited computational resources. As a simple example in this paper, a key value
k is calculated from the last byte m of the MAC address of a source WiFi device
and the sequence number s of a ProbeRequest frame as

k = (m+ s) mod 256. (1)

Sequence number should be included in a key calculation because a WiFi device
successively sends ProbeRequest frames with di↵erent sequence numbers in a
short time. For binding between key values and IP addresses, we map an 8-bit
key value to a last byte of an IP address in 10.0.0.0/24 address space.

Design of Dist. Calc. Scheme using Network Address Translation for AWPN 7

!"#$!%&$'$!

!"#$!%&$'$#

()*+,!'$'$'$'-#.,,,/012,+3,!"#$!%&$'$!
()*+,!'$'$'$!#&-#.,/012,+3,!"#$!%&$'$#

012,456)
!"#"$%&'

()*+,"-+.)/$
012312'

!'$'$'$'
7

!'$'$'$!#8
!'$'$'$!#&

7
!'$'$'$#..

Fig. 4. Overview of shu✏e process in network router

3.3 Shu✏e Process

In a shu✏e process, a network router changes the destination address of RSS-
data using network address translation (NAT) to forward RSS-data to localiza-
tion servers. The network router is responsible for distribution of RSS-data for
localization calculation. The number change of localization servers only requires
reconfiguration of the network router.

Figure 4 shows an overview of a shu✏e process in a network router. The figure
shows an example with two localization servers 192.168.0.1 and 192.168.0.2.
APs send RSS-data to an IP address in 10.0.0.0/24 address space. The destina-
tion address space 10.0.0.0/24 is divided into 10.0.0.0/25 and 10.0.0.128/25
subnets, each of which is assigned to a localization server. The network router
performs network address translation with rules shown in Fig. 4 to forward RSS-
data to localization servers. Although we can divide the destination address space
at any point, the size of subnets should be the same to evenly distribute RSS-data
to localization servers.

When the number N of localization servers is not the power of 2, i.e., N 6= 2n

(n is zero or a positive integer), we need complicated address translation rules.
For example, when we add another localization server in Fig. 4, we want to
evenly divide the address space into three subnets below:

– 10.0.0.0 ⇠ 10.0.0.84,

– 10.0.0.85 ⇠ 10.0.0.169,

– 10.0.0.170 ⇠ 10.0.0.255.

8 Kajimura, J., Ishida, S., Tagashira, S., Fukuda, A.

Ad
dr

es
s

sp
ac

e

!"#$%&'(#
')(*#+

,"#$%&'(#
')(*#-

."#/00'1)#2&3*0(#
454)&6

7*
82
&'9
2:

*)
#04

;5
4;
0

Fig. 5. Example of address space division (N = 5, k
max

= 2)

The size of a subnet is 85 or 86 in this case. Subnets are defined by a netmask,
which restricts the size of a subnet to the power of 2. We cannot evenly divide
the address space into three subnets with any netmask.

When N 6= 2n, we divide an address space into subnets until the number
of the subnets is greater than N and assign the subnets to localization servers.
Here we explain the address division using an example when the number N of
localization servers is five as shown in Fig. 5. We first divide the address space
into eight subnets. Five of the subnets are assigned to each localization server.
Three remaining subnets are more divided into six small subnets, five of which
are assigned to localization servers. We repeat this division process for up to
k

max

times and assign remaining subnets to localization servers as shown in
Fig. 5.

Although the address division process results in imbalance of the number of
addresses in subnets, the imbalance decreases as the maximum number k

max

of
divisions increases. Figure 6 shows address imbalance B

addr

as a function of the
number N of localization servers. Address imbalance B

addr

is defined as

B

addr

= max

����
ai � ā

ā

���� , (2)

where ai is the number of addresses assigned to localization server i and ā is the
average number of addresses assigned to localization servers. Address imbalance
B

addr

becomes 0 for an ideal case, i.e., addresses are evenly assigned to localiza-
tion servers. Figure 6 indicates that the maximum address imbalance decreases
as 0.875, 0.25, 0.125, and 0.063 as the maximum number k

max

of divisions in-
creases from 1 to 4. Increase in k

max

results in increase in the computation load
on a network router. k

max

is determined based on computational resources on
the router.

Design of Dist. Calc. Scheme using Network Address Translation for AWPN 9

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20

A
d
d
re

s
s
 i

m
b
a
la

n
c
e
 B

a
d
d
r

Number N of localization servers

k

max

=1

 =2

 =3

 =4

Fig. 6. Address imbalance B
addr

as a function of the number N of localization servers
(k

max

= 1, 2, 3, 4)

Table 1. Specifications of PCWL-0100 [20]

Range in line-of-sight Approx. 150m
TX power of mesh wireless 16 dBm
TX power of access wireless 16 dBm
Access wireless standard IEEE802.11b/g
Number of mesh wireless IFs 2 (except an access wireless IF)

5.15 ⇠ 5.35GHz
Physical dimensions W142mm⇥H118mm⇥D39mm
Weight 450 g

4 Implementation

We implemented the proposed distributed calculation scheme using o↵-the-shelf
devices. Figure 7 shows the overview of our implementation. We installed four
PicoCELA PCWL-0100 APs and a Netgear WNDR4300 network router, which
are shown in Fig. 8. Table 1 shows specifications of PCWL. PCWLs are WiFi APs
that automatically build a WiFi mesh network. We implemented a C program
that captures ProbeRequest frames to generate RSS-data and perform map
processes on Linux running on PCWL.

We prepared three virtual machines: two for localization servers and one for
a database server. The virtual machines were managed by the VMware ESXi 6.0
hypervisor running on a Supermicro 6018R-TD server with a 1.8GHz eight-core
Intel XeonE5-2630Lv3 CPU, 16GB memory, and four 2TB disk drives. Each
virtual machine used single CPU core and 2GB memory. Debian/GNU Linux
8.0 was running on virtual machines, which were built on separate disk drives
to minimize mutual influence between the virtual machines.

10 Kajimura, J., Ishida, S., Tagashira, S., Fukuda, A.

!"#

!"$

!"%

"&'(&)*

+&,-./0-1&'2
345645

+&,-./0-1&'2
345645

7&8945
:;)7<%==
>?@4':59

:/A/2BC
CD:+E=#==

!/598-./0-1&'2
FG@456/H&522
I=#J7EK)

Fig. 7. Overview of implementation

The localization server was implemented as a C++ program. The localization
server received RSS-data from the network router and estimate WiFi device
location using a simple multilateration algorithm. The results were sent to a
MongoDB database server.

5 Evaluation

To validate the e↵ectiveness of the proposed distributed calculation scheme pre-
sented in Section 3, we evaluated RSS-data imbalance that indicates fairness of
RSS-data distribution. We also evaluated the CPU usage and time for localiza-
tion calculations as a function of RSS-data tra�c to estimate the number of
localization servers required for practical deployment.

In our evaluations, we used RSS-data collected in a real environment. We
installed four PCWLs in our laboratory and collected RSS-data generated from
ProbeRequest frames sent from user devices such as smartphones and laptops.
The RSS-data was collected for approximately three and half days. The number
of collected RSS-data is 137,061.

5.1 RSS-Data Imbalance

RSS-data imbalance is a figure that indicates how uniformly RSS-data is dis-
tributed to localization servers. RSS-data imbalance B

rss

is defined in the same
manner as the address imbalance as

B

rss

= max

����
ri � r̄

r̄

���� , (3)

Design of Dist. Calc. Scheme using Network Address Translation for AWPN 11

!"#$%&
'()!*+,,

'-.-/0%12/("3%
45'67,8,,

Fig. 8. AP and network router used in implementation

where ri is the number of RSS-data received on localization server i and r̄ is
the average number of RSS-data received on localization servers. RSS-data im-
balance B

rss

becomes 0 for an ideal case, i.e., RSS-data is evenly distributed to
localization servers.

We calculated the number of RSS-data received on each localization server
using the RSS-data collected in a real environment, while changing the number
of localization servers. For each RSS-data, destination localization server was
calculated using the map process described in Eq. (1) and the shu✏e process
presented in Section 3.3. RSS-data imbalance was calculated using Eq. (3) with
the number of RSS-data received on each localization server.

Figure 9 shows RSS-data imbalance B

rss

as a function of the number N of
localization servers. Figure 9 indicates the following:

– Comparing Figs. 6 and 9, RSS-data imbalance B

rss

curve is similar to the
address imbalance curve in Fig. 6. When address imbalance was big, RSS-
data was not evenly distributed to localization servers, resulting in big RSS-
data imbalance.

– RSS-data imbalance B
rss

had a tendency to decrease as the maximum num-
ber k

max

of divisions increases. In a range of k
max

from 1 to 4, RSS-data
imbalance B

rss

became maximum at 0.26 when k

max

= 3.

From the above results, we conclude that a hash function used in a map pro-
cess is a key factor to evenly distribute RSS-data in our distributed calculation
scheme. The simple hash function presented in Eq. (1) in Section 3.2 exhibited
low performance in terms of fair distribution of RSS-data.

12 Kajimura, J., Ishida, S., Tagashira, S., Fukuda, A.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20

R
S

S
-d

a
ta

 i
m

b
a
la

n
c
e
 B

r
s
s

Number N of localization servers

k

max

=1

 =2

 =3

 =4

Fig. 9. RSS-data imbalance B
rss

as a function of the number N of localization servers
(k

max

= 1, 2, 3, 4)

5.2 CPU Usage

To validate that a localization calculation is not a heavy task compared to RSS-
data reception, we evaluated CPU usage while changing RSS-data tra�c, i.e.,
the number of RSS-data sent in one second. We sent dummy RSS-data at a
specific rate and recorded average CPU usage for 300 seconds using sysstat

command. Not to perform wasting calculations, we only sent RSS-data that can
be successfully localized. We compared CPU usages with and without localiza-
tion calculations.

Figure 10 shows CPU usage as a function of RSS-data tra�c. Figure 10
indicates the following:

– CPU usage almost linearly increased as the RSS-data tra�c increased. The
numbers of RSS-data receptions and localization calculations are propor-
tional to RSS-data tra�c, which linearly increased CPU usage.

– There was a slight di↵erence of CPU usages between with and without local-
ization calculations. The di↵erence of CPU usages between with and without
localization calculations, i.e., CPU usage for localization calculations, was
quite small.

The above results reveal that localization calculation is a lightweight task in
comparison with RSS-data reception.

5.3 Calculation Time

To estimate how many servers are required to localize huge number of WiFi de-
vices, we evaluated localization calculation time. We modified localization calcu-
lation program on a localization server installed in a real environment to record

Design of Dist. Calc. Scheme using Network Address Translation for AWPN 13

 2

 4

 6

 8

 10

 12

 14

 0 500 1000 1500 2000 2500 3000 3500

C
P

U
 u

sa
g

e
[%

]

RSS-data traffic [counts/s]

w calculation
w/o calculation

Fig. 10. CPU usage as a function of RSS-data tra�c

start and end time for every localization calculation. Localization calculations
were performed for 80,941 times with 137,061 RSS-data.

Figure 11 shows an empirical cumulative distributed function (ECDF) of
localization calculation time. Black and blue lines in the Fig. 11 show the results
for all calculations and successful calculations, respectively. Figure 11 shows the
following:

– More than 80% of calculations were completed in 5 milliseconds. Localization
calculation is not a heavy task for a localization server and doesn’t take much
time for a single calculation.

– 83.6% of successful calculations were completed in 5 milliseconds. 83.6%
and 96.9% of successful calculations were completed in 5 and 10 milliseconds,
respectively. For more than 100 localization calculations per second, multiple
servers or multi-thread programming is required to complete localizations in
realtime.

6,955 localization calculations have been succeeded, which is 8.6% of all the
calculations. We used four APs in this evaluation and calculated device location
using multilateration. Multilateration requires RSS-data from all the four APs
to estimate device location in our evaluation environment. 69.3% of localization
calculations failed because of less number of RSS-data, which completed in 5
milliseconds. Remainder 22.1% of calculations diverged because of the variations
of RSS caused by multi-paths and measurement errors, which took longer time.

The above results reveal that our distributed calculation scheme requires
parallel computation for more than 100 localization calculations per second.
Referring to Section 5.2, the number of localization servers might be estimated
based on the CPU usage of RSS-data reception. As shown in Fig. 10, the CPU
usage linearly increases as RSS-data tra�c increases. We might need more than
two servers when RSS-data tra�c is more than 25,000 counts every second.

14 Kajimura, J., Ishida, S., Tagashira, S., Fukuda, A.

0 20 40 60 80

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Calculation time [ms]

C
u

m
u

la
ti

v
e

P
ro

b
ab

il
it

y

All

Success

Fig. 11. Empirical cumulative distributed function (ECDF) of localization calculation
time for all and successful calculations

The RSS-data tra�c greatly increases as the numbers of WiFi devices and APs
increase.

6 Conclusion

This paper presented a new distributed calculation scheme for an ad-hoc wireless
positioning network (AWPN) to process huge number of localization requests.
Our approach is to distribute MapReduce processes to WiFi APs, a network
router, and localization servers: map processes on APs, shu✏e processes on
a router, and reduce processes on localization servers. Using network address
translation (NAT) in shu✏e processes, our distributed calculation scheme easily
provides scalability with variable number of localization servers. We conducted
experimental evaluations in a real environment and confirmed that our scheme
successfully distributed localization calculations with the maximum RSS-data
imbalance of 0.26. The RSS-data imbalance of 0.26 might be insu�cient in prac-
tical use cases. We are working on a hash function in a shu✏ing process to evenly
distribute calculation tasks.

Acknowledgments. This work was supported in part by JSPS KAKENHI
Grant Numbers 15H05708, 15K12021, 16K16048, and 17H01741, and the Coop-
erative Research Project of the Research Institute of Electrical Communication,
Tohoku University.

References

1. Chen, R., Chen, H.: Tiled-MapReduce: E�cient and flexible MapReduce processing
on multicore with tiling. ACM Trans. on Architecture and Code Optimization
(TACO) 10(1), 3:1–3:30 (Apr 2013), article no.3

Design of Dist. Calc. Scheme using Network Address Translation for AWPN 15

2. Dean, J., Ghemawat, S.: MapReduce: Simplified data programming on large clus-
ters. Commun. ACM 51(1), 107–113 (Jan 2008)

3. Dean, J., Ghemawat, S.: MapReduce: A flexible data processing tool. Commun.
ACM 53(1), 72–77 (Jan 2010)

4. Ekanayake, J., Li, H., Zhang, B., Gunarathne, T., Bae, S.H.: Twister: A runtime for
iterative MapReduce. In: Proc. ACM Int. Symp. on High Performance Distributed
Computing (HPDC). pp. 810–818 (Jun 2010)

5. Eldawy, A.: SpatialHadoop: Towards flexible and scalable spatial processing using
MapReduce. In: Proc. ACM SIGMOD PhD Symp. pp. 46–50 (Jun 2014)

6. Elsayed, T., Lin, J., Oard, D.W.: Pairwise document similarity in large collections
with MapReduce. In: Proc. ACL, Human Language Technologies: Short Papers
(HLT-Short). pp. 265–268 (Jun 2008)

7. Fadika, Z., Govindaraju, M.: DELMA: Dynamically ELastic MApReduce frame-
work for CPU-intensive applications. In: Proc. IEEE/ACM Int. Symp. on Cluster,
Cloud and Grid Computing (CCGrid). pp. 454–463 (May 2011)

8. Ghoting, A., Kambadur, P., Pednault, E., Kannan, R.: NIMBLE: A toolkit for
the implementation of parallel data mining and machine learning algorithms on
MapReduce. In: Proc. ACM KDD. pp. 334–342 (Aug 2011)

9. Ghoting, A., Krishnamurthy, R., Pednault, E., Reinwald, B., Sindhwani, V.,
Tatikonda, S., Tian, Y., Vaithyanathan, S.: SystemML: Declarative machine learn-
ing on MapReduce. In: Proc. IEEE Int. Conf. on Data Engineering (ICDE). pp.
231–242 (Apr 2011)

10. Ishida, S., Tagashira, S., Arakawa, Y., Fukuda, A.: On-demand indoor location-
based service using ad-hoc wireless positioning network. In: Proc. IEEE Int. Conf.
on Embedded Software and Systems (ICESS). pp. 1005–1013 (Aug 2015)

11. Jammes, F., Mensch, A., Smit, H.: Service-oriented device communications using
the devices profile for web services. In: Proc. ACM Int. Workshop on Middleware
for Pervasive and Ad-Hoc Computing (MPAC) (Nov–Dec 2005)

12. Jiang, D., Wu, S., Chen, G., Ooi, B.C., Tan, K.L., Ku, J.: epiC: an extensible and
scalable system for processing big data. The VLDB J. 25(1), 3–26 (Feb 2016)

13. Jin, C., Vecchiola, C., Buyya, R.: MRPGA: An extention of MapReduce for par-
allelizing genetic algorithms. In: Proc. IEEE Int. Conf. on eScience. pp. 214–221
(Dec 2008)

14. Kreps, J., Narkhede, N., Rao, J.: Kafka: a distributed messaging system for log
processing. In: Proc. Int. Workshop on Networking Meets Databases (NetDB). pp.
1–7 (Jun 2011)

15. Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A., Hellerstein, J.M.:
Distributed GraphLab: a framework for machine learning and data mining in the
cloud. In: Proc. Int. Conf. on Very Large Scale Data Bases (VLDB). pp. 716–727
(Aug 2012)

16. McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A.,
Garimella, K., Altshuler, D., Gabriel, S., Daly, M., DePristo, M.A.: The genome
analysis toolkit: A MapReduce framework for analyzing next-generation DNA se-
quencing data. Genome Research 20(9), 1297–1303 (Sep 2010)

17. Miwa, N., Tagashira, S., Matsuda, H., Tsutsui, T., Arakawa, Y., Fukuda, A.: A
multilateration-based localization scheme for adhoc wireless positioning networks
used in information-oriented construction. In: Proc. IEEE Int. Conf. on Advanced
Info. Networking Applications (AINA). pp. 690–695 (Mar 2013)

18. MongoDB, Inc.: MongoDB, https://www.mongodb.com/
19. Object Management Group: The OMG data-distribution service for real-time sys-

tems (DDS), http://portals.omg.org/dds/

16 Kajimura, J., Ishida, S., Tagashira, S., Fukuda, A.

20. PicoCELA: PCWL-0100 catalog. available online, http://www.picocela.com/
21. The Apache Software Foundation: Apache Hadoop, http://hadoop.apache.org/
22. Zhao, W., Ma, H., He, Q.: Parallel k-means clustering based on MapReduce. In:

LNCS. vol. 5931, pp. 674–679 (Dec 2009), proc. Int. Conf. on Cloud Computing
(CloudCom)

