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Abstract—When working from home, self-management be-

comes of paramount importance due to the absence of a boss

or colleagues. As a result, individuals tend to waste time surfing

the internet and playing with our smartphones. We propose a

wrist-worn sensor-based system that identifies whether a desk

worker is working or not for self-management and productivity.

Our main hypothesis is that the identification of the various

tasks that occur during desk work, such as using computers,

reading books, manipulating a smartphone, and writing, can

be simply distinguished by the direction of the palm. In this

paper, to verify our hypothesis, we measure various tasks with

the wrist-worn sensor attached to clarify the relationship between

hand orientation and each task. At the same time, we develop

a machine learning-based classifier to distinguish between the

states of ’working’ and ’not-working’ using the obtained hand

orientation data. We performed 10-fold cross-validation and

Leave-One-Person-Out validation and we found that it was

possible to distinguish whether a desk worker is working or not

with an F1-value of 0.8 or higher.

Index Terms—Machine learning, Wearable computing, Accel-

eration, Working or not-working.

I. INTRODUCTION

Japan ranks 20th among the 35 member countries of the
OECD and last among the G7 for average productivity per unit
time (since 1970, when data is available). In order to increase
productivity, it is necessary for workers to fully concentrate
and complete their assigned tasks within a limited amount of
time, which requires a high degree of self-motivation and self-
management. Due to the effect of the current COVID-19 pan-
demic, working from home has become commonplace. This
has a detrimental effect on people with low self-management
skills, who become less productive in their home environment
due to the absence of a boss or colleagues. We therefore
propose in this research a tool that can quantitatively measure
the amount of work done by individuals.

Some possible desk worker tasks that can be classed
as ‘working’ include activities such as typing on a laptop

or desktop computer, attending online meetings, and mak-
ing telephone calls. Existing methods in wrist-based activity
recognition include Panwar et al. [1] who track the three
basic movements of the human forearm in daily life, and
Ohnishi et al. [2] who track daily human activities using a
wrist-mounted camera. In both these cases, however, activities
related to ‘working’ and ‘not-working’ during periods of
work are not set as identification targets. In addition, Ito
et al. [3] classify human activities with a focus on specific tasks
performed during work, but does not classify ‘not-working’
states. In past studies, the activities to be identified while in
the ‘working’ state were defined in advance and training data
for machine learning was collected in a controlled laboratory
environment. However, when used in real-life situations, there
was a variety of activities for which no training data had been
collected, such as the ‘not-working’ state. Therefore, we can
expect recognition accuracy to degrade if the model trained in
this manner is used on actual test data.

Prior to this study, we noticed by observing individuals
in ‘working’ and ‘not-working’ situations that there is a
relationship between the two states and the orientation of
an individual’s palm, or ‘palm orientation’. We hypothesized
that palm orientation could be measured and classified using
the acceleration sensor built into a smartwatch, allowing the
single-sensor detection and identification of ‘working’ and
‘not-working’ states.

In this paper, two participants were asked to perform various
operations while wearing a wristwatch-type 3-axis accelerom-
eter; with the data obtained from these experiments being used
to verify our hypothesis. We measured the performance of our
proposed system using the F1-value metric.

II. RELATED WORK

To the best of our knowledge, not-working-state sensing is
novel in the field of activity recognition at workplace. Human
activity recognition (HAR) has been widely studied and there

This is the author's version of the work.
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution 
to servers or lists, or reuse of any copyrighted component of this work in other works.
doi: 10.1109/LifeTech52111.2021.9391950



Z-axis

Y-axis

X-axis

pitch

roll
±0

-90
±180

90

±0
-90

±180
90

Fig. 1. Wristwatch Type 3-axis Accelerometer

have been many published papers. In this section, we briefly
review related work on HAR.

Panwar et al. proposed activity recognition method [1] using
wrist-worn accelerometer for the three basic movements of
the human forearm in daily life. Ohnishi et al. proposed
recognizing method [2] for activities of daily living utilizing
a first-person wearable camera. Park et al. proposed a new
HAR system via Recurrent Neural Network (RNN) [4] which
is one of deep learning algorithms. Hayashi et al. proposed
a daily human activity recognition method [5] using a DNN
with environmental sound and subject acceleration signals.
Activity recognition methods using wireless LAN channel
state information (CSI) have also been reported in recent
years [6]–[10]. Wang et al. proposed a human activity recog-
nition system named CARM [6], [7], which consists of a CSI
speed model that estimates motion or each part of the body,
and a CSI activity model that combines the body parts speed
information with specific actions by using a hidden Markov
model (HMM). Ali et al. proposed keystroke recognition
system named WiKey [8], [9] utilizing principal component
analysis (PCA) and discrete wavelet transformation (DWT).
Zheng et al. proposed a ubiquitous smoking detection system
named Smokey [10] that extracts motion from CSI using a
foreground detection technology used in the image processing
community, and detects continuous smoking activity using
autocorrelation.

Previous studies on HAR have also investigated the office
work activity recognition method.

Mekruksavanich et al. presented a sitting detection, that
also used accelerometer and gyroscope on a smartwatch of
office workers [11]. Bonde et al. proposed office activity
classifier based on a structural vibration. It monitors vibration
data derived from structural objects such as floors, desks, and
shelves, that are prevalent in an office environment [12]. Ito
et al. proposed activity recognition for office workers where
wrist-worn accelerometer was used [3]. In addition, there are
studies on behavioral recognition focusing on the posture of
office workers [13]–[16].

Although these studies have successfully classified working
activities, none of the studies try to detect not-working state.
Our aim is to extend these studies to detect not-working state.

III. PROPOSED SYSTEM

In Fig. 1, we show how the 3-axis accelerometer is worn
on the wrist. We define The fingertip direction as the Y-axis
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Fig. 2. System Overview

TABLE I
CLASSIFICATION OF ACTIVITIES

Working Typing, writing, online meetings
Not-working Reading a book, operating a smartphone, eating,

playing a video game

and rightward as X-axis and downward as Z-axis. The X-
axis rotation angle is the roll angle, and the Y-axis rotation
angle is the pitch angle. In Fig. 2, we show the overview
of the proposed system. In our system, 3-axis acceleration
data is obtained by the wrist-mounted accelerometer, and the
angle data is calculated from the obtained acceleration data.
The angle data is then used to determine whether the palm is
facing upwards or downwards. The threshold value is that the
ratio of the palm facing upwards during working and the ratio
of the palm facing downwards during not-working are both
85% or more. We define the palm orientation label as 1 when
facing upwards and 0 when facing downwards. We identify
the ‘working’ and ‘not-working’ states by inputting the z-axis
acceleration value and the palm orientation label as features
into the classifier.

In this paper, classification is performed using the Random
Forest, Naive Bayes, and Logistic Regression supervised ma-
chine learning classifiers.

IV. RESULTS

A. Experiment

In Fig. 5, we show the experiment scenery. We used an
M5StickC development board as our wristwatch-type 3-axis
accelerometer. The sampling rate was set to 10Hz. We utilized
mobile batteries to power these accelerometers continuously
for a long time.



Fig. 3. The transition during the day of right palm orientation

Fig. 4. The transition during the day of left palm orientation

Fig. 5. Experiment Scenery

We asked the first subject for working 9 hours in our
experimental environment: a university laboratory. At that
time, we asked the subject wear accelerometers on both wrists.
The movements occurred around a desk during this period
were roughly classified into 7 categories: typing, reading a
book (reading), writing, operating a smartphone (smartphone),
eating, playing a video game (gaming), and attending online
meetings.

In order to establish the threshold for determining palm ori-
entation, the second subject performed each of the 7 activities
for a duration of 2 minutes with accelerometers placed on
both wrists. We categorized each of the activities listed above
as either ‘working’ or ‘not-working’. The categories are shown
in Table I.

B. Evaluation

Both Figs. 3 and 4 show how the left and right hand
palm orientations transition throughout the day. Other in-
cludes activity unrelated to desk work such as walking or
shopping which is not target in this research. Using data
obtained from the sensor attached to the dominant wrist, it
was determined that the palm faced upwards 94.3% of the
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Fig. 6. F1-value of 10-fold Cross-Validation using Dominant Wrist Data

time when ‘working’, and faced downwards 66.4% of the time
when ‘not-working’. In the same manner, data obtained from
the sensor attached to the non-dominant wrist allowed us to
determine that the palm faced upwards 96.9% of the time when
‘working’, and faced downwards 88.9% of the time when ‘not-
working’.

We determined the label of ‘working’ or ‘not-working’
via both 10-fold cross-validation and Leave-One-Person-Out
(LOPO) cross-validation. We used the mode value of the palm
orientation label calculated over a 10 second period, along with
the z-axis acceleration value as features in our classifiers. The
results of 10-fold cross-validation are shown in Figs. 6 and 7.
We used the data obtained in the actual environment for the
10-fold cross-validation. The results of LOPO cross-validation
are shown in Figs. 8 and 9. For the LOPO cross-validation,
we used the data obtained in the controlled environment as
training data for creating the models, and the data measured
during the actual working period for testing the models. From
the results, it can be see that the estimation accuracy is higher
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Fig. 8. F1-value of Leave-One-Person-Out Cross-Validation using Dominant
Wrist Data

when the non-dominant wrist data is used than when the
dominant wrist data is used.

The obtained results show that the system is of high
generality.

V. CONCLUSION

In this paper, we proposed a wrist-worn sensor-based system
capable of distinguishing whether a worker is working or
not. Our results indicate that using knowledge of the non-
dominant hand’s palm orientation it is possible to determine
which activity is being performed with an F1-value of over 0.8.
It is possible to estimate by the movement of the non-dominant
hand, which is generally the arm that wears the wristwatch,
so it was found that it is a highly practical method that can be
implemented as a function of a smartwatch. We have shown
that by continually monitoring palm orientation information,

Working Non-working
Predicted Value

Working

Non-working

A
ct
ua
lV

al
ue

0.97 0.03

0.15 0.85

Random Forest

Working Non-working
Predicted Value

Working

Non-working

A
ct
ua
lV

al
ue

0.96 0.04

0.1 0.9

Naive Bayes

Working Non-working
Predicted Value

Working

Non-working

A
ct
ua
lV

al
ue

0.97 0.03

0.11 0.89

Logistic Regression

Classification F1-value
Random Forest 0.917

Naive Bayes 0.930
Logistic Regression 0.930

Fig. 9. F1-value of Leave-One-Person-Out Cross-Validation using Non-
dominant Wrist Data

we are able to visualize the amount of work performed over
a given time period.
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