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Abstract—The recent COVID-19 pandemic has made it ex-

tremely important to avoid crowded environments. In light of

this, we are developing a congestion measurement system utilizing

IoT technology, in which the congestion state of a given location

is estimated by counting the number of WiFi Probe Request

messages and BLE exposure notification messages sent from

smartphones and laptops. Our congestion measurement system,

however, suffers from an unstable measurement problem because

the number of WiFi and BLE messages is highly dependent

on the environment in which our system is deployed. This

paper presents a congestion measurement system employing

an automatic parameter adjuster that accurately estimates the

number of people in various target locations. The parameters are

automatically adjusted based on the seating capacity and area

size of the target environment, as well as information gathered

from a sensor which is designed to collect and analyze WiFi and

BLE messages collected in a university cafeteria.

I. INTRODUCTION

Demand for congestion information has been increasing in
recent years, with traffic congestion information in especially
high demand due to the continued spread of COVID-19. Along
with road traffic congestion information, people are interested
in the congestion information of many public places such as
restaurants and cafés, and public transportation like buses and
trains. Such congestion information is recently provided by
map services such as Google Maps, and is being sold by
mobile phone carrier companies and location-based service
providers.

We have also installed congestion sensors at bus stops and
cafeterias on our university campus since June last year to
collect congestion information. These congestion sensors make
use of congestion measurement technologies based on WiFi
and Bluetooth Low Energy (BLE) wireless signals, which are
reported in [1]–[6]. The sensors estimate congestion level by
counting the number of WiFi Probe Request (WPR) messages
sent from WiFi devices when they connect to a nearby access
point. We also make use of the number of BLE exposure
notification messages sent from COVID-19 contact confirma-
tion applications, which are becoming prevalent nowadays as a
countermeasure against the spread of COVID-19. Compared to
congestion measurement using cameras [7]–[11] and mobile-
phone base stations [12], the WiFi and BLE-based approach

presents substantial advantages in terms of both privacy and
data processing-related computational cost.

There are, however, certain drawbacks to WiFi and BLE-
based congestion measurement. The latest generation of smart-
phones has started randomizing the MAC address in WPR
messages for privacy protection. Counting the number of ob-
served MAC addresses returns a greater number of smartphone
users because a single smartphone transmits probe requests
with different MAC addresses for each surrounding SSID.
While the BLE-based method counts the exposure notification
messages used by the COVID-19 contact verification applica-
tions, not all smartphone users install the COVID-19 contact
tracing application. In addition to the problem of unreliable
people counting, we need to define what is meant by con-
gestion because congestion is dependent on many parameters
such as the size of target environments. For example, a small
room can be considered congested when there are 10 people
inside it, while a spacious room can require the presence of
at least 100 people before being considered congested.

In this paper, we present an automatic parameter adjustment
method for a WiFi and BLE-based congestion measurement
system. We discuss the following three points by comparing
the actual number of people with measurement results derived
using a WiFi/BLE-based congestion measurement system in-
stalled on our university campus.

• WiFi-based counting parameters: received signal strength
(RSSI) thresholds, correction functions

• BLE-based counting parameters: RSSI thresholds, correc-
tion functions

• Definition of congestion level based on the number of
observed WiFi and BLE messages and the area size of
the target location

The WiFi/BLE-based congestion sensors were installed in two
cafeterias on our campus and collected the number of WiFi
and BLE messages from 11am to 2pm every weekday. At the
same time, we visually counted the actual number of people
in each cafeteria every 10 minutes. We designed a congestion
level estimation algorithm by comparing the collected data
with the actual number of people.

II. RELATED WORK

Research on congestion measurement has been conducted
since before the COVID-19 pandemic and has become of great©2021 IPSJ
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TABLE I: Comparison chart of congestion measurement technologies

Technology Technology Overview Advantages Disadvantages

Cellular Network Smartphone location information such as
DoCoMo Mobile Spatial Statistics

• No additional equipment • Wide coverage

Camera Detects and counts the number of people by
object recognition

• High precision • Only visible areas are analyzed
• Restrictions on the location of the camera
• GPU processing required

WiFi Counts Probe Requests • Low cost, currently on
the market

• Medium precision

Estimated from signal propagation • High precision • Specific transmitter/receiver required

BLE Counts exposure notifications • iOS and Android com-
pliant

• Installation rate of notification application
unknown and changing

Microphone Measures noise level • Device-free (effective
for children, elderly, etc.)

• Cannot use in quiet environments such as
classrooms

CO2 Measures CO2 concentration level • High latency

interest recently. Table I summarizes existing congestion mea-
surement technologies and their characteristics, advantages,
and disadvantages.

Population estimation based on cellular network connection
information [12] is a simple yet effective way to derive
congestion information covering a nationwide area with no
additional equipment. The cellular network-based approach,
however, cannot provide congestion information for small
facilities such as a cafeteria because the cellular network
counts the number of people in larger 250m or 500m mesh
areas.

Cameras are another type of widely-installed congestion
sensor. Arai et al. presented a privacy-preserving congestion
measurement method for railway stations utilizing image anal-
ysis while avoiding individual human detection [13]. We also
presented a selection of camera-based congestion measure-
ment methods for bus stops and shopping streets [7]–[11].
Camera-based approaches, however, have limited coverage and
are only capable of counting people in the camera’s field of
view.

To measure congestion levels in non line-of-sight situations,
congestion measurement methods based on wireless technolo-
gies such as WiFi and BLE have been proposed. WiFi packet
sensors [1]–[6] are an old yet effective method to estimate
congestion levels. WiFi packet sensors count the number of
WPR messages, which are sent when WiFi devices establish a
connection with a nearby access point. There are existing WiFi
packet sensors already on the market such as the Ad Intec, Inc.
AIBeacon1. More recent technology estimates congestion lev-
els based on WiFi signal propagation changes [14]. WiFi-based
approaches, however, are likely to over-count the number of
people because WiFi devices are prevalent nowadays. MAC
address randomization, recently utilized for privacy protection,
also makes it difficult to accurately count the number of
people.

BLE-based congestion measurement methods count the
number of BLE messages in the same way as the WiFi packet

1https://www.aibeacon.jp/

sensors. We can easily count the number of exposure notifi-
cation messages, which are periodically sent from COCOA2,
a COVID-19 contact tracing application. Unfortunately, the
estimated installation rate of COCOA is low.

Microphone-based and CO2 sensor-based approaches have
also been proposed. Microphone-based methods cannot be
used in quiet situations where people are not speaking, such
as waiting for, or riding a bus. CO2 sensor-based approaches
are only applicable in closed spaces and suffer from high
latency [15].

We developed congestion sensors utilizing a combined WiFi
and BLE-based approach, which count the number of WPR
and BLE exposure notification messages. The congestion
sensors have been installed at bus stops and cafeterias to
collect congestion information.

The collected congestion information, however, was found
to be unreliable when compared to the actual number of people
in each sensor location. We found that the area size, as well as
the nature of the surrounding environments highly affects the
number of observed WiFi/BLE messages, which resulted in
the discrepancies between the estimated and actual number of
people. To accurately estimate congestion levels, we need to
properly adjust packet filtering parameters such as minimum
signal strength.

III. HYBRID CONGESTION LEVEL ESTIMATION

In our proposed system, we observe the number of WPR
messages sent from devices such as smartphones in the vicinity
of WiFi access points, and the number of BLE exposure
notification messages sent from the COCOA smartphone ap-
plication. We propose a congestion evaluation method which
makes use of the WiFi and BLE transmission information to
estimate the congestion level of a target location with high
accuracy.

A. Filtering Private MAC Addresses
Recently, several companies have faced criticism for col-

lecting the unique MAC addresses of their users’ devices

2https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/cocoa 00138.html



Fig. 1: Map of sensor locations on campus

and tracking their activities. In response to this, as a privacy
measure the latest smartphone operating systems (iOS14 and
later, Android 10 and later) randomize MAC addresses. This
address is called private MAC (PMAC), as by transmitting
using random MAC addresses, they cause WiFi packet sensors
to count more devices than are actually present in a given
location. This is resolved by counting the MAC and PMAC
addresses separately, enabling the process to be performed
using only the PMAC addresses. By performing regression
between the true value measured visually and measured value
of the PMAC, we can obtain a coefficient which enables us
to back-calculate the true value from the measured value. In
this way, the randomization of MAC addresses is taken into
account, which is not the case with conventional WiFi packet
sensors. Previous work has proposed methods to eliminate the
effect of MAC address randomization through observation of
the timings of the network scans with an off the-shelf WiFi
interface [16]. It presents a straightforward way to identify
PMACs because the second character in a PMAC address is
always a 2, 6, A, or E. We make use of this property to
eliminate the PMACs in our paper.

B. WiFi/BLE-Based Congestion Sensors
Our proposed system consists of sensor terminals installed

at the locations shown in Figure 1, a cloud system that aggre-
gates the information and calculates the degree of congestion,
and a mobile website that visualizes the information. The
congestion sensor installed is shown in Figure 2. The sensor
is based on the Raspberry Pi 3 and uses the environmental
sensor board Enviro+3 in conjunction with an external USB
WiFi module and a USB LTE adapter. Both the external USB
WiFi and onboard BLE module are operated in monitor mode
to capture packets in the surrounding area, and the PMAC
filtering and minute-by-minute quantification processes are
performed in the sensor terminal, with the obtained numbers
sent to the cloud system through the LTE connection. The
terminal program runs as a script in Python and is set to start
automatically when the sensor power is turned on, and the
actual measured values are displayed on the LCD monitor
every minute for operation monitoring purposes.

3https://shop.pimoroni.com/products/enviro?variant=31155658489939

Fig. 2: Installed congestion sensor

Our proposed system defines three different levels of con-
gestion. The reason for this is that, depending on the instal-
lation environment, the size of the target location may vary
greatly. For example, if the number of packets received is
equivalent to 30 people, then a cafeteria with 20 seats can
be considered crowded, while a cafeteria with 200 seats can
be considered empty. For this reason, we thought it would
be easier for users to understand if the parameters were
automatically adjusted according to the installation location
and always shown on the same three levels.

The cloud system estimates the congestion level every
10 minutes based on the number of WPRs and exposure
notifications sent from each sensor terminal every minute.
Figure 3a and Figure 3b show the sensor monitoring screen
displayed to the administrator. The horizontal axis is time, and
the vertical axis displays the number of notifications received
per minute. Large cafeterias have larger overall count numbers
than small cafeterias, and in both cases the number of WPRs
tends to be larger than the number of BLE transmissions.

C. Automatic Parameter Adjustment
To determine how to design our parameter adjustment

method, we visually counted the number of people in the
cafeteria while simultaneously recording the values obtained
by the installed sensors. Table II and Table III show the
measured values and sensor data for a given day. The values
are averaged over 10 minutes. The RSSI (Received Signal
Strength Indicator)[dBm] records the received signal strength
when it passes a pre-determined threshold value. As shown in
Table IV, there is a strong correlation between the number of
received WiFi and BLE transmissions and the actual number
of people at the target location.

However, we found some issues when comparing the values
measured by the sensors to the actual values. The sensor
acquires all WiFi signals sent from multiple terminals such
as smartphones and PCs owned by cafeteria users and devices
near the location where the sensor was installed, making the
use the acquired values as congestion values challenging.

As for the BLE signals, people who did not have the
application installed were not counted, making it difficult
to use BLE information to determine the correct number of
people.



(a) In small cafeterias (b) In large cafeterias

Fig. 3: Number of WPR and BLE

TABLE II: Number of WPRs and BLE Exposure Notifications in small cafeterias

time WiFi Probe Request BLE (Exposure Notification) true valueAll RSSI>-80 RSSI>-70 RSSI>-60 All RSSI>-80 RSSI>-70 RSSI>-60
11:00 10.1 10.1 7.7 2.5 8.4 1.9 0.4 0.3 5
11:20 9.8 9.8 7.5 1.8 10.5 2.5 1 0 6
11:40 23.9 23.9 20.3 9 17.1 5.5 2.4 1.4 8
12:00 41 41 36.1 13 27.1 11.6 3.7 2.3 11
12:20 36.1 36 29.6 8.7 49.8 12.6 7 1.3 15
12:40 36.3 36.2 30.9 14.1 42.5 19.8 8.5 1.5 22
13:00 34.5 34.4 29.9 10 29.3 10 3.5 1.4 12
13:20 19.5 19.5 16.6 4 24.7 8.1 1.8 0 7
13:40 16.8 16.8 13.5 4.4 15.4 5.4 2.9 1.6 8
14:00 9.7 9.7 7.1 1 8.6 3 1.3 0.2 5

When we examined the size of the cafeterias used as testing
locations, we found that large cafeterias could not detect
signals from the devices of users located far away from the
sensors, in which case the measured values were often lower
than the actual values, while small cafeterias picked up signals
from the devices of students passing outside the cafeteria, and
the measured values were often higher than the actual values.

We devise a solution to this problem. First, we add any
MAC addresses that have been detected and acquired multiple
times over a long time period to a blacklist. These signals cor-
respond to devices permanently installed near the sensors and
the blacklist eliminates their effect on congestion estimation.
In addition, the device manufacturer’s information can be used
to determine whether the device is an installed device or not.
If the manufacturer mainly deals with WiFi routers, we can
determine that it is most likely an installed device.

Second, we increase the number of sensors used in large
cafeterias, and decrease the number of sensors used in small
cafeterias. In addition, in small cafeterias we set a signal

strength threshold value, and weak signals who fall below this
threshold value are not counted, as they are presumed to be
emitted by passers-by. Also, when multiple sensors are used in
a large cafeteria to compensate for the lack of radio coverage,
the MAC address information acquired by the sensors can
be shared among them to prevent duplicate counts within the
same cafeteria.

We design an algorithm capable of implementing our pro-
posed solutions. We begin by obtaining the capacity X of
the cafeteria whose congestion level is to be monitored. This
number is set according to the cafeteria. Next, we set a
threshold value Z and count only the signals that exceed this
value. An initial value of Z=�80, was used as the minimum
threshold in Table II and Table III.

Next, we compare the received signal strength with the
threshold value Z, and if it is lower, the signal is not counted.
In addition, as a measure to prevent counting passers-by, we
do not count a WiFi signal the first time it is observed, we
count it only after it has been observed twice.



TABLE III: Number of WPRs and BLE Exposure Notifications in large cafeterias

time WiFi Probe Request BLE (Exposure Notification) true valueAll RSSI>-80 RSSI>-70 RSSI>-60 All RSSI>-80 RSSI>-70 RSSI>-60
11:00 18.7 17.8 12.9 6.2 5.9 3.5 2.4 0.8 17
11:20 26 25 16.3 7 10.6 8.6 4.2 1.4 24
11:40 46.9 45.9 33.1 13.3 15.4 13.3 7.6 2.4 46
12:00 55.4 54.2 39.6 14.4 26.2 22.2 12.9 2.5 66
12:20 60.2 59.8 50.2 19.9 25.2 18.8 11.3 2.7 87
12:40 95.2 93.3 73.5 23.2 28.9 25.6 16 3.4 81
13:00 73.3 73 64.4 22.9 35.8 34.4 22.3 4 94
13:20 39.1 38.7 32.5 13.6 29.8 27.2 18.2 4.8 68
13:40 25.4 24.6 18.4 8.4 20.1 17 12 2.8 40
14:00 31.3 30.4 22.3 8.2 13.4 10.9 8.1 1.9 33

TABLE IV: Correlation coefficients between measured values and actual values

cafeteria WiFi Probe Request BLE (Exposure Notification)
All RSSI>-80 RSSI>-70 RSSI>-60 All RSSI>-80 RSSI>-70 RSSI>-60

small cafeteria 0.8091 0.8090 0.8131 0.8962 0.8122 0.8786 0.9408 0.6999
large cafeteria 0.9054 0.9114 0.9374 0.9482 0.9325 0.8964 0.8286 0.7883

Since BLE transmits signals more frequently than WiFi, we
only count BLE signals after they have been observed ten
times.

These processes are performed for one minute, and the
summed count Y is recorded. Since this process eliminates
factors that adversely affect congestion estimation, there is not
expected to be a significant difference between the estimated
and actual measurements at this point.

The degree of congestion is calculated by comparing this
count Y with the number of people the cafeteria can ac-
commodate X . If the measured value Y is larger than the
number of seats X , we judge that the threshold value Z was
set incorrectly and increase it by a value of 10.

This was judged based on the number of WPRs and the
number of BLE exposure notifications: for either transmission
type, if Y = 0.8X , the target location was judged to be
Congested, if Y = 0.3X , the target location was judged to be
Moderate, and if 0.3X > Y , the target location was judged to
be V acant. Using data from both WiFi and BLE transmissions
enabled us to improve congestion estimation accuracy.

A flowchart of the algorithm based on our solution is shown
in Figure 4.

IV. DISCUSSION

Our system showed that there is a high correlation between
the actual number of people counted and the values obtained
by the sensors, and confirmed that it is possible to estimate
the degree of crowding from the sensor values. In the future,
we would like to be able to estimate the number of people
automatically from the sensor values and compare this number
of people with the capacity of the target location to quickly
and simply visualize the degree of congestion. In the case
of a university cafeteria, we would like to make it possible
for students to easily view information regarding the level
of congestion. This information could be used to suggest
to students to stagger their eating times when the cafeteria
is crowded, or to encourage them to use a different, less
congested, cafeteria. It is important to note that our method

adjusts the RSSI threshold only when the estimated number of
people is clearly larger than the room capacity. This approach
might overestimate the congestion level, and requires further
fine-tuning.

In this paper, we do not cover the installation of our system
at bus stops. One of the issues with installing sensors at bus
stops is that, due to their proximity to the road, they are prone
to detect the signals from the smartphones of the passengers
and drivers of passing vehicles. Algorithms that can be adapted
to each environment are needed. Our next step is to study
the effectiveness of our proposed algorithm under different
conditions, not only in cafeterias.

V. CONCLUSION

At Kyushu University, the ban on some face-to-face lectures
has been lifted and students have resumed commuting to
school, and the number of users of the cafeteria is expected
to increase further. At the same time, new, more infectious
COVID-19 variants are spreading, and infection control is
becoming even more important. In the future, we would like
to further improve our congestion level estimation system so
that student users can easily check the congestion status of a
wide variety of locations on campus.

ACKNOWLEDGMENT

This work was partially supported by a Center of Innovation
(COI) program of the Japan Science and Technology Agency
(JST) (JPMJCE1318), and the Cabinet Office (CAO), Cross-
ministerial Strategic Innovation Promotion Program (SIP),
“An intelligent knowledge processing infrastructure, integrat-
ing physical and virtual domains” (funding agency: NEDO)
(JPNP18014).

REFERENCES

[1] T. Jozen, S. MIKAMIYAMA, Y. Tsujimoto et al., “A performance
experiment of the wi-fi packet sensor for traffic flow sensing,” The 49th
Spring Meeting of the Civil Engineering Research Conference of the
Civil Engineering Society, no. 49, 2014.



Fig. 4: Flowchart of automatic parameter adjustment

[2] M. MOCHIZUKI, T. Jozen, J. NISHIDA et al., “Construction of an
anonymous human flow analysis system using wi-fi packet sensors,”
UBI, vol. 2014, no. 45, pp. 1–8, 2014.

[3] T. Morimoto, Y. Tsujimoto, S. Shirahama et al., “Human flow analysis
and visualization using Wi-Fi packet sensors,” in DEIM Forum, 2015.

[4] K. Ichii, S. Terabe, H. Yaginuma et al., “Understanding travel behavior
among tourism attractions by wi-fi scanner,” Journal of Civil Engineer-
ing and Planning, vol. 57, pp. 01–16, 2018.

[5] A. Shimada, K. Oka, M. Igarashi et al., “Congestion analysis across
locations based on wi-fi signal sensing,” in 6th International Conference
on Pattern Recognition Applications and Methods (ICPRAM 2017), Jan.
2018, pp. 204–221.

[6] S. Nakata, A. Okamoto, and M. Horikawa, “Congestion degree estima-
tion using probe request in wireless lan,” DPS, vol. 2018, no. 1, pp. 1–7,
2018.

[7] S. Takano, M. Hori, Y. Arakawa et al., “Towards ict based mobility
support system with in the covid-19 era,” in The 18th ACM Conference
on Embedded Networked Sensor Systems (SenSys 2020), 2020.

[8] R. Takahashi, K. Hayashi, Y. Mitsukude et al., “Bus stop congestion
visualization system itocon,” in DPSWS2020, 2020.

[9] R. Takahashi, K. Hayashi, Y. Mitsukude et al., “Itocon - a system for
visualizing the congestion of bus stops around ito campus in real-time,”
in The 18th ACM Conference on Embedded Networked Sensor Systems
(SenSys 2020), 2020.

[10] S. Inoue, R. Takahashi, K. Hayashi et al., “itocon:bus stop congestion
visualization system using multiple congestion sensors,” in SeMI, 2020.

[11] M. A. Abdelwahab, S. Kaji, M. Hori et al., “Measuring “nigiwai” from
pedestrian movement,” IEEE Access, vol. 9, pp. 24 859–24 871, 2021.

[12] M. Terada, T. Nagata, and M. Kobayashi, “Population estimation tech-
nology for mobile spatial statistics,” NTT DOCOMO Technical Journal,
vol. 14, pp. 10–15, 2013.

[13] H. Arai, N. Ito, and Y. Taniguchi, “Image processing techniques for
capturing crowds at a macroscopic level - estimating the number of
people based on geometric models of people and crowds and its
applications-,” CVIM, vol. 2014, no. 13, pp. 1–8, 2014.

[14] T. Matsumoto, R. Takahashi, S. Ishida et al., “Initial evaluation of
device-free indoor congestion estimation using wireless LAN,” The 82nd
National Convention Lecture and Paper Series, vol. 2020, no. 1, pp.
247–248, 2020.

[15] E. Yuyama and H. Morino, “A study on a train congestion estimation
system using infrared sensors and carbon dioxide sensors,” Tokyo
Section Student Association, Institute of Electronics, Information and
Communication Engineers, vol. 53, 2009.

[16] C. Matte, M. Cunche, F. Rousseau et al., “Defeating mac address
randomization through timing attacks,” in Proceedings of the 9th ACM
Conference on Security & Privacy in Wireless and Mobile Networks
(ACM WiSec), July 2016, pp. 15–20.


