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Abstract—Recently, the studies of wireless device-free human

sensing technology have dramatically advanced with enabling a

variety of applications, from activity recognition to vital sign

monitoring. In this paper, we propose Wi-Nod which leverages

the Wi-Fi Channel State Information (CSI) to detect head

nodding gestures for each Morse code symbol based on time-

frequency features for accurate recognition accuracy in multi-

human context environment. The system consists of three basic

modules: data collection, data preprocessing, and learning part

based on the inception model. The model was trained to perform

the head movement detection based on the CSI spectrogram

collected by the ESP32 nodes. We evaluated the performance of

the system on four different data sets collected in two different

sessions. Our system achieves over 95% recognition accuracy that

reveals the feasibility of Wi-Nod system for real-life deployment.

Index Terms—Wi-Fi CSI, head gesture recognition, signal

processing, quadriplegic, deep learning

I. INTRODUCTION

In 2016, the American Spinal Injury Association conducted
a study revealing that between 1.3 and 2.6 million disabilities
cases have spinal cord injuries of different degrees every
year, which affects their mobility and leads to quadriplegia
[1]. Human activity recognition (HAR) systems could help
quadriplegia patients whose limbs are impaired communicate
with others easier. Recently, HAR sensing techniques have
gained a lot of attention because they aim to serve a variety
of applications such as fall detection [2], human-computer
interaction [3], indoor localization [4], etc. There is rapid
development in sensing techniques since they can be classi-
fied into three categories, namely, vision-based [5], wearable
sensor-based [6], and wireless-based mechanisms [7]. Vision-
based systems can achieve an acceptable recognition accuracy,
however they require sufficient lighting conditions and high
computing performance, can only detect the objects in the
line-of-sight scenario (LOS), and have some privacy issues.
Although wearable sensor-based systems are very light and
inexpensive, they can be fatal if the user forgets to wear them,
especially in healthcare applications. Due to the restricted
coverage of the camera-based system and user inconvenience
of the wearable sensors, the wireless sensing mechanism gains
considerable attention as it leverages the radio frequency (RF)
signals to detect, identify, and recognize the objects in LOS
and Non-LOS without the need of wearing any special device.

In this paper, we introduce and validate a Wi-Nod, a contact-
less sensing system, with ESP32 nodes as a CSI toolkit. To the

best of our knowledge, this is the first work that collected the
Wi-Fi signals in multi-human context environment. It means
that there is not only a target patient, but also a caregiver
who is always along with a quadriplegic in the real-world
scenario and acts as a scatter which provides more multi-path
propagation in the sensing area, unlike other existing studies
that collected the data only in a single user environment. By
using Wi-Fi CSI, we represent Morse symbols, dot and dash,
by moving the head down and right, we also add a third
symbol, space, to separate a word from the previous word,
by moving the head to the left. Specifically, the proposed
system extracts and analyzes variations in the amplitude of
each symbol to represent a signature for each head motion.
Then, a learning model based on the inception module is used
to perform the head motion classification.

By this work, our proposed system has addressed various
challenges. First, extracting the informative context is a diffi-
cult task because of the existence of multiple objects around
the patient. Second, wireless signals are influenced by the
temperature and humidity of the sensing area. Finally, different
patients can perform the same motion at different speeds which
affected the variations of the signals. To tackle these challenges
and verify the robustness, we remove the outliers, smooth the
amplitude, and convert it to the time-frequency domain to
capture more meaningful information which is fed as input
to the efficient learning algorithm for the classification. The
main contributions of this paper are as follows.

• We examined the possibility of Wi-Fi CSI to become
a base of head motion-based Morse code system that
supports Quadriplegics’ communication in multi-human
context environment, for the first time.

• We evaluated the performance of the proposed systems
using practical data collected from the two participants,
one male and the other female wearing Hijab which can
be represented as a scatter.

• The performance metric shows that the Wi-Nod can
achieve accuracy up to 95% for different persons. These
results emphasize that the system can be deployed in real-
life scenario to make communication between persons
with quadriplegia and others easier.

The rest of the paper is structured as follows: Section II
provides related works of Wi-Fi CSI sensing. Section III
represents our system design including signal preprocessing
and learning algorithm. Section IV describes our experimental
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Fig. 1: Wi-Nod System Framework

setup and results. Section V discusses the impact of the differ-
ent links configuration, time and user diversity. In Section VI,
we conclude our work and discuss our future plans.

II. RELATED WORK

The Wi-Fi CSI sensing mechanism has been involved in
a wide variety of applications, e.g. gesture recognition [8],
localization [9], and health care [10]. Several works based on
CSI measurements are listed below.

ViHOT [11] is a passive wireless driver head tracking
system based on the CSI phase. The system consisted of two
phases, namely, profiling and run-time. The profiling stage
wad responsible for collecting CSI data of the driver’s head
positions and orientations. In the run-time tier, the system
mapped the CSI phase readings to unique patterns to perform
the tracking task.

The WiHead system was introduced by [12] is the CSI-
based system for tracking human head orientation in various
directions yaw, roll, pitch, and different combinations of them
to get a user feedback of online courses. WiHead used the
Atheros CSI extractor tool [13] with 56 subcarriers at 2.4 GHz.
It extracted both phase and amplitude from the CSI signals and
applied the denoising techniques, low-pass filter for amplitude
noise removal, and phase calibration algorithm for removing
the randomness of the phase. The combination of filtered
amplitude and phase is then fed to the principal component
analysis (PCA) algorithm for dimensional reduction since the
adjacent subcarriers are very correlated. However, important
information can be lost in this process. furthermore, WiHead
built a CNN model and achieved a 90% k-fold cross-validation
for 3 head motion angles: pitch, roll, and yaw.

WiSense [14] proposed a human activity recognition system
that includes four activities, namely picking up objects from
the floor, falling on a mattress, sitting on a chair, and walking
indoors, based on Wi-Fi CSI. Firstly, the authors collected
the data from nine volunteers using 2 laptops each equipped
with Intel 5300 NIC to use one as a transmitter with one
external antenna and the other as a receiver with two external
antennas. The system contained three modules, the first for
data preprocessing using the CSI ratio for phase correlation
followed by PCA to reduce the dimensionality, and finally
low pass filter to remove high-frequency noise caused by the
environment. The second stage is to use STFT to compute the
spectrogram of each activity and save it as a PNG image with
224⇥224⇥3 dimension to be used as input to the final module.

the final module is a CNN classifier which includes 14 layers.
The system achieves a 97.78% recognition accuracy.

EfficientFi [15] investigated the performance of HAR and
human identification based on CSI compression based on VQ-
VAE. the authors evaluated the accuracy of the system using
different compression rates and achieved better performance
when increased the number of embedding space which means
the compression rate is low because when the compression
rate increases this means loss of more information. It achieved
98% and 83% accuracy for HAR and human identification,
respectively.

Lastly, our idea is inspired by the WiMorse [16] that em-
ployed Intel 5300 NIC to collect the CSI waveforms produced
by a finger. The authors created their own code that encoded
the two Morse symbols base on the subtle finger movements.
The authors built a mathematical model to detect the characters
and numbers via WiFi CSI measurements generated from the
finger movements. WiMorse is a position-independent system
that can be deployed in different environments, and the system
achieved an average accuracy of 95%.

III. SYSTEM DESIGN

The challenge of this paper is to use Wi-Fi CSI waveforms
to recognize head motion in multi-human context environment
since persons act as scatters. Also, different users can perform
the same head nodding at different speeds which provides
different CSI patterns as it depends on the face shape and
head size. Additionally, the person moving behind, assuming a
caregiver is carrying the wheelchair, affects the received signal.
We apply simple amplitude denoising and extract the Doppler
spectrogram since the Doppler of the static objects is zero
and it includes more informative characteristics of the signals
to emphasize the head nodding and distinguish between each
symbol.

A. ESP32 CSI Toolkit

In this paper, we collected data using the ESP32 CSI toolkit
[17] which is considered a promising CSI sensing solution
due to its cost and power efficiency. ESP32 Wi-Fi system
has a single antenna and works in 2.4-GHz frequency band
with 20-MHz bandwidth and the packet sampling rate is set
as 50 Hz in our system. The ESP32 node has only about 64
subcarriers, including null and data subcarriers. We remove
the null subcarriers and extract only the amplitude from the
52 data subcarriers.
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Fig. 2: Raw and Filtered Amplitudes of Three Symbols across All Subcarriers in 1st Link

(a) Dot (b) Dash (c) Space

Fig. 3: Spectrograms of 13th Subcarrier in 3rd Link for Three Symbols

B. System overview

For our proposed system, we conduct three key modules
to reveal the patterns of channel variation correlated with
head nodding. Fig. 1 illustrates the general architecture of
the Wi-Nod system, that includes three modules, namely data
collection, signal preprocessing, and the learning model. We
collected the CSI streams by eight ESP32 nodes that are split
into a half working as transmitters and the other half are
the receivers. We parse the CSI measurements and extract
the amplitude. Then, the raw CSI amplitudes are fed to the
preprocessing module. Finally, the spectrogram is used as
input to our learning model, which is based on the inception
module. These three modules are described in detail in the
following subsections.

C. Data Preprocessing

As it is known that the CSI waveform is noisy and may not
significantly reduce the performance of the learning model if
its raw form is used, this module aims to prepare the CSI
measurements for the classification stage. This tier consists of
several stages which are described as follows:

1) Data Segmentation: The objective of signal segmenta-
tion is to split the CSI measurements of each link based
on their time stamp to be able to fuse the signals of
each link with each other to build a unique pattern for
each user’s head motion and to be able to map it to the
corresponding Morse code.

2) Amplitude Extraction: In our work, we extract the
amplitude as the base signal by analyzing its variations
due to head motion because it is reliable and has less

randomness than the CSI phase. We parse the CSI files
and utilize the amplitude as a base signal that feeds to
the next stage.

3) Amplitude Noise Removal: The purpose of the noise
removal stage is to smooth and remove outliers of the
raw amplitude caused by environmental changes. To
achieve this objective, we apply the weighted moving
average filter (WMA). In general, the filtered amplitude
can be calculated as:

A0
t =

1

m+ (m� 1)...+ 1
.[m.At + (m� 1).At � 1+

(m� 2).At � 2 + ...+At �m+ 1]

A0
t is the weighted average amplitude within a window

size m for time t. Fig. 2 illustrates the results of
the weighted moving average for each symbol sample,
and the color curves represent the amplitude of each
subcarrier within the first link, as it is observed that the
amplitude is smoother and outliers are eliminated.

4) Spectrogram Extraction: The head motions and human
movements cause complex variations in the CSI ampli-
tude since each user can perform the same motion at dif-
ferent speeds which can be revealed by the spectrogram
with different frequencies. By applying a sliding window
on the filtered amplitude to get equal-sized segments
of the signal and then performing FFT on the samples
in each segment, which transfers the signal from the
time domain to the frequency domain, spectrograms are
produced through STFT. Fig. 3 depicts the spectrogram
of the subcarrier with index 13th in each link for the
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Fig. 4: Head Motions Used in Experiment: Dot, Dash, and Space

three different symbols. As observed in Fig. 3 there
are variations in the frequency information of the head
nodding for each symbol.

D. Learning Algorithm

Currently, the deep learning (DL) methods achieve higher
recognition accuracy than the traditional machine learning
(ML) models since the performance of any ML model depends
on the quality of hand-crafted features as the low quality
of the features degrades the accuracy rate. Therefore, the
motivation for using the DL, especially the inception model
in our work, is its ability to improve recognition accuracy and
performance based on automatic feature extraction with low
computational complexity. Compared to the other convolution
neural networks (CNN), the inception model is usually wider
rather than deeper, to speed up the learning process as the
classifier input is manipulated in parallel, as we can see the
architecture of the inception model in Fig. 1. The spectrogram
is fed to the first inception module to extract meaningful
features by using different CNN layers with different kernel
sizes working in parallel. The learning process consists of two
stages: The first stage is based on two inception layers for
feature extraction, and the second stage is for the classification
task.

• Feature extraction: The two inception block consists of
three parallel convolution layers with different number
and size of kernels followed by ReLU activation function
and one maximum pooling (MaxPool) with the same
stride value equal to one followed by the concatenation
layer. The first convolution layer with 32 kernels with size
(1 ⇥ 1), the parameters of the second convolution layer
are 64 kernels with size (3⇥3), the third one includes 32
kernels with (5 ⇥ 5) size, and finally the MaxPool with
(3⇥ 3) kernel size.

• Classifier: The output of the second inception layer is
flattened and then fed to the fully connected layer to
combine all the extracted features in the classification
layer, which is represented in the Softmax layer with three
classes that refer to our symbols, dot, dash, and space.

IV. PERFORMANCE EVALUATION

To evaluate our proposed system, we test the performance
of Wi-Nod in multi-human context environment to verify the
robustness of the system.

A. Experiment Setup and Data Collection

In this stage, eight ESP32 nodes are deployed to build our
system. Four of them are worked as transmitters connected to

mini-PCs and the others serve as receivers. During the data
collection, the Lenovo laptop works as a server and monitors
the received CSI waveforms. Two participants, including one
female and one male, for necessary data collection to perform
head nodding evaluation in a laboratory environment. Each
participant performs the head motion for four minutes per
symbol in two different sessions, in the morning and in the
evening. The collected datasets are for three symbols, dot,
dash, and space (moving the head down, right, and left,
respectively), as illustrated in Fig. 4. We ask the participants
to perform each gesture for four minutes. In total, we have
four different datasets about 720 samples for each one. Ad-
ditionally, the data collection tier was done in a multi-human
environment with one person holding the frame and moving
behind the participant to simulate the real-world scenario of
the wheelchair for quadriplegia patients and there are several
people around the performers. For robustness evaluation, we
collected the data in two different time sessions, in the
morning and evening, in which there are some variations in
the perceived environment around the frame since in the first
session, there were few people in the lab, around three persons,
however, in the evening, there were numbers of students,
around 10 people. The data is processed by python and Keras
platform.

B. Evaluation

We evaluated the performance of our proposed system based
on two subjects who collected data at different times in our
laboratory with several students. For each subject, a person
holding the frame behind him/her and walking, and the CSI
waveforms are captured over four minutes for each symbol.
This means that there is four different datasets, two for each
subject collected in the morning and evening. Let F1 and F2
refer to the data set collected by the female participant in the
morning and evening with a person moving behind her and M1
and M2 refer to the male data set collected in the morning and
evening with the female moving behind him.

1) Accuracy: The performance of our proposed model is
evaluated using the four different datasets described
above in which each dataset is randomly split into
70% training and 30% for testing. We evaluate the
performance based on the test accuracy which can be
represented by the percentage of the number of head
motions correctly detected over the number of test
samples and can be calculated as the following

Accuracy =
TP + TN

TP+ FP + TN+ FN
(1)



TABLE I: Overall System Accuracy

Dataset

L1 2 L3 4 L all

RAW
AMP

WMA
PCA STFT

RAW
STFT

WMA
STFT

RAW
AMP

WMA
PCA STFT

RAW
STFT

WMA
STFT

RAW
AMP

WMA
PCA STFT

RAW
STFT

WMA
STFT

F1 97.7 83.4 98.16 99.5 94.93 85.71 96.3 98.6 98.62 84.79 99.1 99.5

M1 92.1 67.59 92.1 95.4 92.6 77.42 91.24 96.31 99.1 69.91 95.37 99.0

F2 98.15 80.09 98.6 99.07 92.13 78.2 92.13 99.0 98.7 84.26 97.7 98.1
M2 93.1 44.0 92.1 92.6 91.5 71.23 89.15 94.8 96.7 68.87 86.1 93.4
F1 M1 43.3 36.57 34.6 35.4 63.66 38.6 68.2 64.8 27.2 28.1 34.3 44.7
F1 F2 58.6 53.8 78.8 79.1 32.2 33.3 35.6 32.9 41.3 43.1 60.1 61.5

Fig. 5: The Recognition Accuracy of Different Dataset

where TP, TN, FP, FN are true positive, true negative,
false positive, and false negative, respectively.
Fig. 5 shows the classification accuracy per each link
concatenation which L1 2, L3 4, and L all refer to
the concatenation between link 1 and 2 (the cross
configuration), link 3 and 4 (the horizontal one ) and
all links together, respectively. We perform the fusion
between different links based on the subcarrier indices.
Table I summarizes the accuracy scores of our system.
As it is obviously showing, integrating all links gives
better accuracy in the first session and slightly decreases
in the other session but still the accuracy is high.

2) Confusion Matrix: Confusion matrix summarizes the
number of instances correctly and mistakenly classified
by the learning model. Fig. 6 illustrates the confusion
matrix of four links concatenation for each dataset. In
the first session, the model predicted 1.4% of the dot
samples as dashed compared to the second session,
where the misclassification rate is 11% between dashed
and space in M2 dataset and about 5% in F2.

V. DISCUSSION

A. User Diversity

To evaluate the robustness of the user diversity, we use all
the F1 dataset as a training dataset and test the model by all
M1 dataset. F1 M1 raw in Table I refers to the performance of
different base signals including raw amplitude (RAW AMP),
applying weighted moving average followed by Principal
Component Analysis (PCA) and STFT (WMA PCA STFT)
to reduce the dimensionality of the CSI waveforms, raw

amplitude followed by the STFT (RAW STFT), and finally
weighted moving average followed by STFT (WMA STFT),
respectively, for different links fusion. As shown in the table,
the combination of the 3rd and 4th links achieves the highest
accuracy using the raw spectrogram as a base signal which
is slightly higher than the filtered one because both the
amplitudes of link 1 and 2 are affected by the movement of the
subject holding the frame and moving. Also, we investigated
the impact of the dimensionality reduction based on the PCA
which is the lowest accuracy in Link3 4 since it eliminates
the correlated variables, however within this process, most
informative data can be lost. Furthermore, the results highlight
the impact of using the spectrogram as a base signal in
the robustness of the user diversity because the speed of
different movements generates different frequencies in the
frequency domain. Fig. 7a shows the accuracy based on the
leave one subject out validation. The confusion matrix of the
raw spectrogram in the integration of links 3 and 4 is shown in
Fig. 7b and reveals that the highest rate of miss classification
is between the dot and space samples, since more than half of
the dot samples are predicted as space, 30% as a dash symbol,
and only 12% are correctly classified.

B. Time Diversity

We investigated the time diversity robustness by training
the model using the dataset collected in the morning and
testing by the evening dataset of the same subject. The last
row in Table I shows that the first and second link integration
has the highest accuracy using the weighted moving average
amplitude followed by STFT with a 79.1% rate since the
link 1 and 2 covers the user head motion and the movement
of the person behind him and the inception model extracts
meaningful features for each symbol from these movements
based on the spectrogram, which reflects different speeds to
different frequencies and maps them to unique patterns. The
summary of the accuracy is shown in Fig. 7c. The confusion
matrix in Fig. 7d shows the model inaccurately predicted about
23% of the dash samples as space and about 20% of space
samples as dot.

VI. CONCLUSION

In this paper, we proposed Wi-Nod, a Wi-Fi CSI-based head
nodding recognition system that will possibly become a base
of Morse code system operated by head motions, to assist
the communication between quadriplegia patients and others.
The details of Wi-Nod system are introduced from the data
collection using the compact and inexpensive ESP32 nodes
followed by the data preprocessing module for data segmen-
tation, concatenation, amplitude extraction, outliers removal



(a) F1 confusion matrix (b) M1 confusion matrix (c) F2 confusion matrix (d) M2 confusion matrix

Fig. 6: The Confusion Matrix of Different Subjects

(a) Acc. (User Diversity) (b) CM (User Diversity) (c) Acc. (Time Diversity) (d) CM (Time Diversity)

Fig. 7: The Accuracy (Acc.) and Confusion Matrix (CM) of User/Time Diversity

filter, and frequency domain transformation based on the STFT
fed to the inception model to perform the classification task.
Our system evaluation with four datasets collected with two
different users on two different time sessions in a multi-human
context environment revealed that the system could achieve
a head motion recognition accuracy of over 95%. We are
planning to improve our system in terms of user and time
diversity robustness and collect more data from a large number
of users in different environments, additionally, we will assess
the environmental independent robustness in our future work.
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