
Design of Ultra Low Power Vehicle Detector

utilizing Discrete Wavelet Transform

Kazuo Kubo1, Chengyu Li1, Shigemi Ishida1,
Shigeaki Tagashira2, and Akira Fukuda1

1 ISEE, Kyushu University Japan,
{kubo,licy0012,ishida,fukuda}@f.ait.kyushu-u.ac.jp

2 Faculty of Informatics, Kansai University, Japan,
shige@res.kutc.kansai-u.ac.jp

Abstract. Vehicle tra�c is important information in the intelligent
transport system (ITS). We have developed an acoustic vehicle detec-
tion system that relies on two microphones at a sidewalk. The system
has already been confirmed that it successfully detected the vehicle and
direction of travel with an F-measure of 0.92. However, the power con-
sumption of the system is high, which puts power restrictions on deploy-
ment. We therefore propose a low power vehicle detection system utilizing
a wake-up mechanism. The acoustic vehicle detection system, presented
in our previous work, is activated when a newly developed ultra low
power vehicle detector (ULP-VD) detects vehicles. Initial experimental
evaluations reveal that the ULP-VD successfully detected vehicles with
a precision of 0.94 and recall of 0.95.

Keywords: Vehicle detection, discrete Wavelet transform, logistic re-
gression.

1 Introduction

Vehicle tra�c is important information in the intelligent transport system (ITS).
Vehicles on a road are generally detected using a vehicle detection system. The
deployment of the vehicle detection system is currently limited to high tra�c
roads because of its high installation and maintenance costs, which restricts ITS
applications.

We are developing an acoustic vehicle detection system using microphones
installed at a sidewalk. Our system detects vehicles using the sound generated
from tires during vehicle running. Because sound waves are di�racted over obsta-
cles, we can deploy microphones in a low height configuration, which drastically
reduces roadwork cost in terms of road closure as well as safety installation.

To realize the vehicle detection system, we have developed an acoustic vehicle
detection method using a sound map. The sound map is a map of sound arrival
time di�erence on two microphones. Our vehicle detection method analyzes the
sound map using a state-machine-based algorithm [9] or template matching [8]
to detect passing vehicles. We use deterministic approaches to detect vehicles
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that require no training data prior to system use. Experimental evaluations
revealed that our vehicle detection method successfully detected vehicles with
an F-measure of 0.92.

The acoustic vehicle detection system, however, consumes much power re-
quiring a power cable or a big battery for 24/7 operation. The system relies on a
sound map that is generated with much computation including image processing
and convolutional integral, putting di�culties on power reduction. Power saving
is one of the most important tasks to apply the vehicle detection system to an
environment with limited power resources.

We therefore propose a low power vehicle detection system, which is a com-
bination of a high performance vehicle detector (HP-VD) and a newly developed
ultra low power vehicle detector (ULP-VD). The HP-VD is a vehicle detector
presented in our previous work described above. The ULP-VD is a simple vehi-
cle detector and is implemented on an ultra low power MCU such as MSP430.
The ULP-VD is always activated and detects the presence of vehicles in front of
microphones. When passing vehicle is detected, the ULP-VD wakes the HP-VD
to retrieve more detailed vehicle information including direction of the vehicle.

In this paper, we describe the design of the ULP-VD. Our key idea is to use
discrete wavelet transform (DWT) to analyze frequency components of vehicle
sound instead of power hungry fast Fourier transform (FFT) to reduce power
consumption. Wavelet coe�cients derived from DWT include features enough
to detect vehicles [1]. The ULP-VD extracts the features and applies a logistic
regression analysis to detect vehicles. The ground truth for construction of a
logistic regression model would be derived from a HP-VD after installation. By
conducting experiments in our university, we demonstrated that the ULP-VD
successfully detected vehicles with a precision, recall of 0.94, 0.95, respctively.

The remainder of this paper is structured as follows. Section 2 briefly looks
through related works on vehicle detection. In Section 3, we present overview
of a low power vehicle detection system and the ULP-VD. Section 4 conducts
experiments to demonstrate the e�ectiveness of the ULP-VD. Finally, Section 5
concludes the paper.

2 Related Works

2.1 Vehicle detection systems

The typical vehicle detection systems are divided into three types of detectors:
presence detector, speed detector, and density detector. The presence detector
detects passing vehicles. The speed detector measures speed of passing vehicles in
addition to the presence detection. The density detector measures tra�c volume
in addition to the speed detection.

In this paper, we focus on presence detectors because speed and density
are generally calculated based on the results of presence detection. Presence
detectors are categorized into invasive and non-invasive detectors.

Vehicle detection systems using a loop coil or a geomagnetic sensor are cate-
gorized into invasive detectors. Vehicle sensors are installed under a road surface,
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which results in high resilience to physical damages such as pressure or dust re-
sulting in low maintenance cost. The invasive detectors, however, has limited
sensor coverage and require multiple sensors to cover multiple lanes. Moreover,
roadwork for installation is an issue that drastically increases initial cost.

Vehicle detection systems using ultrasound or an infreared sensor are cate-
gorized into non-invasive detectors. The non-invasive detectors also shows high
resilience to physical damages as the detectors detect vehicles from a distance.
The coverage of the non-invasive detectors is wider than that of the invasive
detectors. However, the non-invasive detectors su�er from high installation cost
because the detectors are required to be installed above or by a road for better
detection performance. Performance degradation by a bad weather condition is
another issue of non-invasive detectors.

To reduce installation and maintenance costs, camera-based vehicle detec-
tors using CCTVs, which are already installed in the environment, have been
proposed [3, 10]. However, CCTVs are only available in limited areas, especially
in city areas.

On the contrary, vehicle detection using acoustic signals is another approach
that comes with low installation and maintenance costs. Several studies have
reported on a vehicle monitoring system using acoustic sensors [7, 4, 5, 2]. These
studies used a microphone array to draw a sound map, i.e., a map of time
di�erence of sound arrival on two microphones. The studies manually analyzed
the sound map to show the feasibility of vehicle detection using the sound map.

We also have developed an acoustic vehicle detection system using a sound
map. We applied a state-machine-based algorithm [9] or template matching [8]
to a sound map to detect vehicles as well as their direction. Our vehicle detector,
however, su�ers from high power consumption because the sound map is derived
via peak detection in correlation, which requires much computation.

2.2 Vehicle detection system using DWT

Averbuch et al. proposed a robust vehicle detection system including car model [1].
Features of vehicle sound is first extracted using discrete Wavelet transform
(DWT) of vehicle sound. The features are then supplied to a machine learn-
ing system to detect vehicles and vehicle types. However, this method requires
training of the machine learning system prior to system use. Vehicle sound is
dependent on vehicle types, which implies the requirement of much training data
for many vehicle types.

Choe et al. proposed an acoustic signal analysis method to remotely recognize
military vehicles [6]. Type of vehicle is estimated using pattern matching on
vehicle sound signatures, which is derived using DWT. However, this method
has di�culties in collecting su�cient data for signature creation. For this reason,
features are almost manually extracted.

To the best of knowledge, no paper reported an acoustic vehicle detection
method employing machine learning with training after deployment. Vehicle
passing sound varies from place to place depending on vehicle speed, distance
between vehicle and microphones, and road condition. In order to use vehicle
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detection system in many conditions, we need training data in each condition,
which is a high barrier for deployment.

3 Low Power Vehicle Detection System

3.1 Overview

Fig. 1 shows an overview of a low power vehicle detection system. The low
power vehicle detection system consists of three blocks: a sound retriever, high
performance vehicle detector (HP-VD), and ultra low power vehicle detector
(ULP-VD). Average power consumption is successfully reduced by employing
wake-up scheme: the HP-VD is activated only when vehicles are detected by
the ULP-VD. We implement the ULP-VD on an ultra low power MCU such as
MSP430 to reduce power consumption because the ULP-VD is always activated.

The sound retriever consists of two microphones followed by low-pass filters
(LPFs) and a ring bu�er. The two microphones are installed at a sidewalk to
retrieve vehicle passing sound. The LPF reduces influence of environmental noise.
Main component of vehicle passing sound is no more than 2.0 kHz [11]. The cut-
o� frequency of the LPF is therefore set to 2.5 kHz with a 0.5-kHz margin.
Low-pass-filtered sound signals are then stored in the ring bu�er.

The ULP-VD retrieves sound signals from one microphone of the sound re-
triever. The sound data is divided with a time-window. The windowed data is
analyzed using discrete Wavelet transform (DWT) to detect vehicles. The ULP-
VD wakes HP-VD when a vehicle is detected.

The HP-VD reads sound data from a ring bu�er in the sound retriever and
draws a sound map to detect vehicles, as presented in our previous work [9, 8].
Vehicle sound is captured at a low frequency of 8 kHz with 16-bit data length.



5

DWT Logistic 
Regresion

DWT

Regression 
Coefficitns

Logistic 
Regresion

Ultra Low Power Vehicle Detector

Thresholding

Sound 
Retriever

Output

HP-VDGround truth

Training Process

Decision Process

Fig. 2. Overview of ultra low power vehicle detector

The size of ring bu�er would be several tens of kilobytes to store sound data for
few seconds.

In the following subsections, we describe the ULP-VD because the HP-VD
has been presented in our previous papers.

3.2 Overview of Ultra Low Power Vehicle Detector

Fig. 2 shows an overview of the ultra low power vehicle detector (ULP-VD).
The ULP-VD is composed of three components: a discrete Wavelet transform
(DWT) block, logistic regression block, and thresholding block. We employ ma-
chine learning using logistic regression, which consists of training and decision
processes.

In a training process, the DWT block analyzes time-frequency components
of sound signals and extract feature values. The feature values are then passed
to logistic regression as training data to create a regression model; regression
coe�cients are calculated. Ground truth, i.e., labels for training is derived a
high performance vehicle detector (HP-VD), as shown in Fig. 1.

In a decision process, feature values are again extracted from DWT analysis
results. Logistic regression block calculates probability of existence of vehicles
with the regression coe�cients derived in the training process. We finally apply
a threshold to the probability to determine if the vehicle is passing in front of
microphones.

The following subsections describe the each process in more details.

3.3 Training process

In a training process, logistic regression model is created using vehicle sound and
ground truth derived from the HP-VD.
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Table 1. Relationship among decomposition level, frequency range, and number of
samples (with 512 samples at sampling frequency fs of 8 kHz)

Decomposition level Frequency range Number of samples
6 0 – 0.125 kHz 16
5 0.125 – 0.25 kHz 16
4 0.25 – 0.5 kHz 32
3 0.5 – 1.0 kHz 64
2 1.0 – 2.0 kHz 128
1 2.0 – 4.0 kHz 256

As shown in Fig. 2, time-frequency components derived by DWT is used as
feature values. A DWT block analyzes time-windowed sound data to retrieve
time-frequency components of the data. We apply Haar wavelet transform to
the each windowed data with n decomposition levels.

We extract the maximum value in the each decomposition level, which is used
as feature values in a logistic regression block. The numbrer of samples in the each
level is di�erent. Table 1 shows an example of relationship among decomposition
level, frequency range, and number of samples in discrete Wavelet transform with
512 samples at a sampling frequency fs of 8 kHz. Higher decomposition levels
describe lower frequency bands and have small number of samples, which is one
of typical characteristics of discrete Wavelet transform. In our vehicle detector,
DWT is used instead of fast Fourier transform (FFT) for frequency component
analysis. We choose the maximum value as a representative frequency component
in each frequency band.

Fig. 3 shows an example of feature values extracted from motorbike sound,
compared with original spectrum. Although absolute value is di�erent, we can
confirm the feature values roughly represent the original spectrum.

A logistic regression block calculates probability of vehicle passing based
on a logistic regression model. Let x1, x2, . . . , xn be extracted feature values and
Y = {0, 1} be a random variable describing vehicle passing. Probability of vehicle
passing is derived by

P (Y = 1|X) = 1
1 + e

≠AX , (1)

where X = t[1, x1, x2, . . . , xn] is an input vector and A = [a0, a1, a2, . . . , an] is a
regression coe�cient vector.

In a training process, regression coe�cients are calculated by minimizing a
cost function C(A):

C(A) = 1
N

Nÿ

i=1
log P (Y = Yi|Xi), (2)

where {Xi, Yi|i = 1, 2, . . . , N} is a training data set derived from the HP-VD.
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Fig. 3. Example of feature values with six decomposition levels plotted as a function
of frequency (above) compared with original spectrum (below)

3.4 Decision process

In a decision process, vehicle passing probability is calculated with the regression
coe�cients calculated in a training process.

We first perform feature extraction in the same manner as in the training
process. Sound signals are divided with a small time window, which are passed
to a DWT block extracting feature values, i.e., representative frequency compo-
nents. A logistic regression block then calculates probability of vehicle passing
using Eq. (1).

We finally apply a threshold to the probability to detect vehicles. The thresh-
old is determined from a receiver operating characteristics (ROC) curve in Sec-
tion 4.

4 Evaluation

As an initial evaluation, we conducted experiments in our university campus.

4.1 Experiment setup

Figure 4 shows experiment instruments. A target road has two lanes, one lane
in each direction. Two microphones were installed approximately two meters
away from the road center separated by 50 centimeters at a height of one meter.
We recorded vehicle sound for approximately 30 minutes using a Sony HDR-
MV1 recorder with AZDEN SGM-990 microphones. The sound was recorded
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Fig. 4. Experiment instruments

with a sampling frequency of 48 kHz and with a word length of 16 bits. 151
vehicles were passed in front of the microphones during our experiment including
buses, motorbikes, trucks, and small cars. Envorinmental noise such as wind and
insects chirping was recorded as well as the vehicle sound. Video monitoring
the target road was also recorded as ground truth data. Although we installed
the two microphones for HP-VD, one of the microphones was used for ULP-VD
evaluations in this paper.

4.2 Evaluation procedure

In a first step, the sound data was divided with a 512-sample window. We labeled
each windowed data as 1 for vehicle passing and 0 for no vehicle passing. There
was a large di�erence between the number of the labeled data samples with
vehicles and no vehicle because time length of vehicle passing was relatively
small compared to time length of no vehicle. We randomly picked up no-vehicle
data samples to equalize the numbrer of samples in a training process.

In a second step, we determined the threshold described in Section 3.4. The
threshold was determined using a receiver operating characteristic (ROC) curve,
which is a plot of the true positive (TP) rate against the false positive (FP) rate
at various threshold. We can determine an optimum threshold by finding the
point shortest to the upper left corner of a ROC curve.

In a final step, comparing the output of decision process with ground truth
data, we evaluated the numbers of true positives (TPs), false negatives (FNs),
and false positives (FPs). TP, FN, FP are defined as the case that a vehicle
detected when a vehicle passing, no vehicle detected when a vehicle passing, and
a vehicle detected when no vehicle passing, respectively. Using the numbers of
TPs, TNs, FPs, and FNs, we also evaluated precision, recall, and F-measure
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Fig. 5. ROC curve using regression coe�cients obtained from the average of 50 times
of 10 divided cross-validations. a threshold is changed from 0 to 1 and every 0.01.

defined as:

Precision = TP
TP + FP , (3)

Recall = TP
TP + FN , (4)

Fmeasure = 2 · Precision · Recall
Precision + Recall . (5)

In this evaluation, we performed 10-fold cross-validations of 50 times. We
calculated precision, recall, F-measure for each cross-validation. 50-time cross-
validation results were averaged out to derive final results.

4.3 Evaluation results

Figure 5 shows a ROC curve with thresholds changed from 0 to 1 in steps of
0.01. Threshold of 0.37 corresponds to the point shortest to the upper left corner
of the ROC curve. The area under the curve (AUC) was 0.99. We threfore used
a threshold of 0.37 in the rest of evaluations.

Table 2 shows the average numbers of TPs, FNs, and FPs over 50-time cross-
validations. Precision, recall, and F-measure calculated from the numbers of TPs,
FNs, and FPs were also shown in Table 2.

Table 2 and Fig. 5 indicate the following:
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Table 2. Evaluation results

TPs FNs FPs
735 37 45

Precision 0.94
Recall 0.95
F-measure 0.95

Fig. 6. Regression coe�cients as a function of the corresponding frequency band

1. F-measure of 0.95 indicates that the ULP-VD achieved high performance
compared to counting by hand that su�ers from counting error of few per-
cent. The high f-measure also indicates that the performance of ULP-VD
was not very a�ected by vehicle types such as buses, motorbikes, trucks, and
small cars.

2. Recall of 0.95 indicates the small number of FNs. The ULP-VD is used to
activate high performance vehicle detector (HP-VD). Small number of FNs is
an important feature because FNs result in wake-up failures of the HP-VD.

3. Precision of 0.94 indicates the small number of FPs. FPs are allowed in our
low power vehicle detection system, though FPs increase average power con-
sumption. We can see that our ULP-VD successfully prevents unnecessary
wake-ups.

4. The AUC of 0.99 implies high performance of the ULP-VD. The ULP-VD
exhibits high detection performance with a wide range of thresholds.

The above result reveals that the ULP-VD successfully detected vehicles with
accuracy comparable with that of counting by hand.
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Figure 6 shows the average regression coe�cients derived in a training pro-
cess as a function of the corresponding frequency band. High regression coe�-
cients indicate a high contribution to vehicle detection. We can confirm that the
frequency components between 1.0 kHz and 4.0 kHz were dominant for vehicle
detection. Many types of vehicles commonly generate sound signals within this
frequency band, resulting in the high regression coe�cients.

5 Conclusion

This paper presents a low power vehicle detection system that relies on a high
performance vehicle detector (HP-VD) and ultra low power vehicle detector
(ULP-VD) employing a wake-up mechanism. Because we have developed the
HP-VD in our previous work, an ULP-VD using the discrete Wavelet transform
(DWT) and logistic regression was newly developed, which can be implemented
on a low power MCU. We conducted experiments in our university to evaluate
the basic performance of the ULP-VD. Initial experimental evaluations reveal
that the ULP-VD successfully detected vehicles with a precision and recall more
than 0.9.
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