
Plain Source Code Obfuscation as an Effective
Attack Method

on IoT Malware Image Classification
Hayato Sato∗, Hiroshi Inamura∗, Shigemi Ishida∗, Yoshitaka Nakamura†
∗School of Systems Information Science, Future University Hakodate, Japan

†Faculty of Engneering, Kyoto Tachibana University, Japan

Abstract—IoT malware is rapidly increasing due to variants
easily generated from publicly available source codes. Malware
image classification capable of fast and accurate malware iden-
tification attracts attention. Since the classification by imaging
is affected by malware binary changes, a binary modification
without behavioral changes can be a potential attacking method
to the classification by imaging. There are concerns that by
combining the publicly available malware source code with
readily available source code obfuscation tools, it is possible
to construct an effective attack that bypasses image classifiers
relatively simply. In this study, we show the effectiveness of
the attack by source code obfuscation and the possibility of
defense against the attack. The contribution of this research is
twofold. 1) We showed that Obfuscator-LLVM (oLLVM) code
obfuscation could be used as an attack method on malware image
classification. The obfuscated malware binaries made by oLLVM
were misclassified by VGG16-based image classifier for all the
attacked malware families including Mirai, Lightaidra, and
Bashlite. 2) We showed that classifier training with obfuscated
samples could address this attack method. We confirmed that
the malware image classifier trained with obfuscated malware
binaries made by oLLVM could classify with an accuracy of
100% the malware family with obfuscation as the obfuscated
original malware family.

Index Terms—Malware Image Classification, Code Obfusca-
tion, IoT Malware.

I. INTRODUCTION

In recent years, the number of observed IoT malware has
increased. Sonicwall cyber threat report [1] recorded 112.3
million attacks in 2022, an 87% year-over-year increase.
However, the attack volume remains high, so it is necessary
to continue to monitor IoT malware trends.

Malware family classification is helpful because many IoT
malware results from variant generation using publically avail-
able source code. Malware belonging to the same family has
similar functionality, so there is less need for new analysis.
Usually, malware analysis is a manual process [2]. Manual
analysis is often a time-sensitive task and can take several
hours to several weeks [3]. With the increase in malware, it
has become impossible to analyze all of them manually.

Malware image classification is suitable for IoT malware
family classification. Many IoT malware is statically linked,
and some binaries have also had their symbol tables re-
moved [4]. More than 85% of the IoT malware we collected
was statically linked, and about half of them had their symbol
tables removed. In the case of malware with statically linked

and symbol table removed, it is not possible to use malware
classification methods based on linked library functions [5], as
is done on Windows malware. There are known classification
methods that do not use the information on linked functions,
such as detection methods that use system-call sequences
obtained by dynamic analysis and deep learning [6], and
techniques that use n-grams of instruction sequences that
exist in binaries [7]. Still, the cost of these analyses is high.
Malware image classification is a method that does not require
information on linked functions and is reported to be more
accurate than conventional methods [8]. It does not require
code execution or disassembly, and feature extraction can be
automated, contributing cost reduction.

Malware image classification is affected by binary changes
in malware. Therefore, making binary changes without be-
havioral changes of the program can be a potential attack
method against image-based classification. As a means of such
binary modification, we consider code obfuscation utilizing the
publicly available source code for IoT malware.

There are concerns that by combining the publicly available
malware source code with readily available source code ob-
fuscation tools, it is possible to construct an effective attack
that bypasses image classifiers relatively simply. This research
assumes obfuscation applied to source code as an attack
method, and its effects and countermeasures are examined.
When a malware family’s classification is attacked, it is
necessary to analyze all newly detected malware variants,
which increases the burden on analysts and prevents them
from responding to a rapid increase in malware. To improve
image-based malware classification technique , it is important
to consider countermeasures against possible future attacks
such as those described above.

The contribution of this research is twofold. 1) We showed
that Obfuscator-LLVM (oLLVM) [9] code obfuscation could
be used as an attack method on malware image classification.
The obfuscated malware binaries made by oLLVM were
misclassified by VGG16-based image classifier for all the
attacked malware families including Mirai, Lightaidra, and
Bashlite. 2) We showed that classifier training with obfuscated
samples could address this attack method. We confirmed that
the malware image classifier trained with obfuscated malware
binaries made by oLLVM could classify with an accuracy of
100% the malware family with obfuscation as the obfuscated

This is the author's version of the work. 
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to 
servers or lists, or reuse of any copyrighted component of this work in other works. 
doi: 10.1109/COMPSAC57700.2023.00125 



original malware family.

II. RELATED WORK

Research on malware image classification has been actively
conducted [10]–[14]. Many of them utilize a Convolutional
Neural Network (CNN) based classifier. However, the effect
of code obfuscation on malware image classification has
not been verified as we have investigated. In this research,
we facilitate Obfuscator-LLVM [9] as a code obfuscator to
verify the effectiveness of the attack and the possibility of
countermeasure with it.

A. Malware Image Classification with CNN and Use of Ob-
fuscation

In Kalash et al.’s study [10], image classification using CNN
was performed on Windows malware, with higher accuracy
than image classification methods using traditional machine
learning algorithms. The CNN-based classification method
automatically acquires more effective features than human-
designed methods. When applied to malware image classifi-
cation, it obtains malware-specific image regions that indicate
common functions of the malware family.

Yakura et al. visualize the specific regions of malware
families in an attention map by adding an attention mechanism
to the CNN [11]. Analyzing malware based on the attention
map reduces the work of manual analysis. They report that
the specific regions of malware correspond to other malware
belonging to the same family; and that it is possible to respond
even if the location of the specific regions changes.

Nataraj et al. used conventional image-based malware clas-
sification to perform family classification for Windows mal-
ware and reported that packed malware can also be clas-
sified [12]. Since packed malware often contains common
sequences [11], it could be classified by image-based clas-
sification for the same reason. In this research, we examine
the effect of code obfuscation on attacks and evaluate coun-
termeasures. Code obfuscation is presumably difficult to deal
with because it allows modification at the code level without
the restriction of modification at the binary level.

Su et al. [13] evaluated a CNN-based image classification
for IoT malware. They found that malware targeting IoT
devices is often a lightweight program, so a more compact
model than the CNN used for Windows malware classification
could still classify them with high accuracy. In their view,
the study on complex cases such as malware obfuscation is
considered to improve the detection rate of IoT malware,
affirming a direction similar to our study.

Huang et al. [14] apply image classification methods to
Android malware. Their method uses color images rather than
grayscale images for malware classification. While obfuscation
is used in the production of legitimate software in Android
applications, there are reports of its application to malware
as well [15]. Just as malware obfuscation is widespread in
mobile applications, the use of advanced defenses such as
code-level obfuscation in IoT malware can be expected to
become commonplace.

Regarding transformation techniques that preserve runtime
semantics and transform representations, there is research
on the Android platform that targets the misidentification of
malware families by injecting adversarial samples through
transformations at the operation code level [16]. It preserves
runtime semantics while composing adversarial examples. In
this research, a One-pixel attack is applied to the data area,
and the identity of the execution result cannot be perfect. In
the case of IoT malware, for which source code is publicly
available, it is possible to apply sophisticated obfuscation
techniques to transform the entire code while preserving
runtime semantics globally. Because, at the same time, it is
easily implementable into the existing malware development
pipeline, the practical impact is more significant.

B. Obfuscation Functions in Obfuscator-LLVM

Obfuscator-LLVM is an obfuscation tool based on
LLVM [17]. LLVM creates an intermediate code called LLVM
IR (Intermediate Representation) at compile time, optimizes,
and then translates the compiled IR into an architecture spe-
cific executable binary file. oLLVM obfuscates against LLVM
IR and can generate different binaries each time from the
same source code. oLLVM is highly flexible because it is
essentially language-agnostic. It can be applied to program-
ming languages such as C/C++, Swift, and Go, which have a
language processing system that uses LLVM as the back end,
and its target processor supports various architectures such as
x86, ARM, and x86 64.

oLLVM has three obfuscation functions: control flow flat-
tening, instructions substitution, and bogus control flow in-
sertion. In control flow flattening, all control statements are
divided into blocks and changed to a program controlled
by switch statements and variables. Instructions substitution
replaces standard binary operators with functionally equivalent
but more complex instructions. Bogus control flow insertion
splits all the basic blocks and changes them into a program
controlled by switch statements and variables. The binary im-
age of the malware before and after obfuscation using oLLVM
is significantly different. Details are given in Section III-A2.

III. CODE OBFUSCATION ATTACK AND
COUNTERMEASURE

Since the classification by imaging is affected by modifi-
cation of malware binary, a binary modification that does not
change the program’s meaning can be considered a potential
attack method to the classification by imaging. In this study,
we propose an attack method for malware image classification
using code obfuscation. Assuming that obfuscation is added to
generating variants of open source IoT malware, we examine
the effectiveness of the attack and the possibility of dealing
with it.

In the following sections, we provide an overview of the
Obfuscator-LLVM-based code obfuscation attack, describe the
malware binary imaging technique, and depicts the attack tech-
nique using the binary image changes caused by obfuscation



Algorithm 1 Transform Malware Binaries into 2D images
Require: binary
Ensure: image

1: s←
√

sizeof(binary)
2: image[s][s]← 0
3: for y = 0, · · · , s− 1 do
4: for x = 0, · · · , s− 1 do
5: image[y][x]← binary[y × s+ x]
6: end for
7: end for
8: image← resize(image, (224, 224))
9: return image

with oLLVM, and how to deal with it through training with
obfuscated samples.

A. Obfuscator-LLVM-based Code Obfuscation Attack
In this study’s malware image classification, the collected

malware is imaged and used to train CNN. It is assumed
that the malware’s source code targeted by the attack is
available. We use oLLVM to generate the target malware
binary with code obfuscation from the source code. Obfuscated
malware is visually different from the original malware when
imaged because the binary representation is altered. The CNN
classifier trained with collected malware will be misled by
obfuscated malware binary.

The implementation of the attack involves creating a base-
line malware image classifier of the IoT malware to serve as
the evaluation standard and verifying the collected malware
test data by replacing it with binary images of obfuscated
samples.

1) Imaging Malware Binaries: The malware executable
binary is converted to a square grayscale image with one byte
being one pixel, depending on the file size of the executable
binary. The imaging algorithm is shown in Algorithm 1. Each
malware generates a different size image, but the CNN needs
a uniform input size, so it is scaled into the size of 224×224,
which is the size required by the input of VGG16, the CNN
used in this implementation.

2) Altering Binary Image: The imaged malware binaries
are visually altered by applying the Obfuscator-LLVM ob-
fuscation functions. The Figure 1 shows an example of IoT
malware Mirai built with GCC, Clang, and oLLVM, respec-
tively, and converted to a binary image using the method
described in Section II-B. Clang and oLLVM use LLVM as
the backend compiler, and the section layout is different from
that using GCC. This has resulted in global changes that can
be seen briefly when comparing builds using GCC with builds
using Clang and oLLVM. The malware collected in this study
confirmed that most of the malware prevalent in the market
are specimens built using GCC.

The global changes in the binary image due to the re-
arrangement of sections through LLVM and the changes in
image detail due to the obfuscation process could disrupt
the malware image classifier. Obfuscated binary images by
obfuscation function are shown in the Figure 2. oLLVM has

three obfuscation functions:control flow flattening, instructions
substitution, and bogus control flow insertion. The obfuscation
process combines each of these functions and able to generate
different binaries each time from the same source code by
randomly changing obfuscation parameters. The binary image
without obfuscation is equivalent to the build with Clang in
the Figure 1, and the differences can be observed. Flattening
the control flow adds an additional flattening process early in
the process, so the code portion is larger. The code section is
the large block at the bottom of the binary image. Instruction
substitution and false control flow add redundant code to the
entire binary, resulting in a larger malware file size and finer
texture throughout the image. Although it is difficult to see
the effect on the image alone by checking the build image
by oLLVM of the Figure1, in which all obfuscation functions
are applied once, we can see that the granularity of the entire
image is finer.

B. Countermeasure by Training with Obfuscated Samples

For the attack effect on the malware image classification
by obfuscated samples, it is considered that it can be dealt
with by training using the obfuscated sample. When training
an image classifier, obfuscated samples are used in addition
to the malware used for learning, and the obfuscated samples
are trained as a new malware family. We will train including
samples generated without obfuscation using oLLVM, so that
we can respond to attacks that are built based on LLVM but
are not obfuscated.

IV. EVALUATION

Obfuscation processing is applied to the source code of
IoT malware to generate a binary. It is discriminated using
a baseline malware image classifier trained with the collected
malware, so that the attack effect of the obfuscation processing
is verified. As a countermeasure to this attack, we created an
image classifier for malware trained using obfuscated samples,
made them discriminate samples with and without obfuscation,
and could classify obfuscated samples into the correct malware
family. The evaluation was performed using Mirai, Lightaidra,
and Bashlite, IoT malware whose source code is open to the
public.

A. Dataset Used in Experiments

As the data set used for the experiment, the collected
malware, the obfuscated samples for attack experiments, and
the obfuscated samples for countermeasure experiments were
used. The collected malware and obfuscated samples for coun-
termeasure experiments were labeled and divided by malware
families, and 80% for training, 20% for testing, and 10% for
training data were used as verification data. Since all malware
for attack experiments is used by replacing the test data of the
baseline malware image classifier, it is not necessary to divide
by each family.



(a) Built with GCC (b) Built with Clang (c) Built with oLLVM

Fig. 1. Binary images by build method

(a) Control Flow Flattening (b) Instructions Substitution (c) Bogus Control Flow Insertion

Fig. 2. Binary images by obfuscation function

TABLE I
RATIO OF EACH ARCHITECTURE OF MALWARE COLLECTED

Architecture #.of Samples Ratio (%)
ARM 16468 30.55
x86 9702 18.00
MIPS 9318 17.29
PowerPC 4228 7.84
SuperH 4141 7.68
Motorola 68k 4026 7.47
SPARC 4026 5.63
x86-64 2741 5.09
(others) 242 0.45

TABLE II
PERCENTAGE OF EACH LINK METHOD FOR ARM ARCHITECTURE TARGET

SAMPLES

Linking Methods #.of Samples Ratio (%)
Static 14014 85.10
Dynamic 2454 14.90

1) Collected Malware: From the malware sharing site
VirusShare [18], we obtained a dataset that summarizes the
ELF format malware confirmed from 2014 to 2020. Similar
malware is available from ”VirusShare ELF 20190212” and
”VirusShare ELF 20200405”.

Since many IoT devices are equipped with the ARM ar-
chitecture CPUs and most IoT malware is static links, only
ARM architecture and statically linked samples are extracted
and used for the experiments. The table I shows the percentage
of collected malware by architecture. If the architecture is
different, the characteristics of the images generated from the
binary will also be significantly different, so in this experiment,

TABLE III
LABELING BREAKDOWN

Malware Families #.of Samples Ratio (%)
Mirai 4846 38.77
Lightaidra 2612 20.90
Bashlite 2301 18.41
Occamy 1466 11.73
Mploit 597 4.78
Skeeyah 318 2.54
Yakuza 134 1.07
Tsunami 118 0.94
Berbew 106 0.85

only the samples targeting the ARM architecture, which has a
sufficient number of samples, were used. The table II shows
the ratio of IoT malware targeting ARM architecture by link
method. Since the proportion of samples is low, this study
excluded dynamically linked samples.

For the labeling of malware families, the judgment results
provided by Microsoft via VirusTotal [19] were used to obtain
malware families with more than 100 samples. The number of
samples for each malware family is shown in the table III. The
number of malware samples collected was 12498.

About 80% of IoT malware is either one of Mirai, Ligh-
taidra, Bashlite, and the source code of these malware are
available on GitHub [20]. Therefore, these codes were used to
generate the obfuscated sample.

2) Obfuscated Samples for Attack Experiments: We used
samples generated by Clang and an obfuscation sample gener-
ated by oLLVM. To individually confirm the effects of section
relocation through LLVM and obfuscation processing using



oLLVM, these attacks were established separately.
For the obfuscated sample build, control flow flattening,

instruction substitution, and fake control flow addition were
applied. The total number of obfuscated samples was prepared
as many as the test data for each malware family.

This combination of obfuscation functions is used because
it does not deviate from the file size of the collected malware,
all obfuscation functions are effective, and the build time is
relatively short.

3) Obfuscated Samples for Countermeasure Experiments:
Obfuscated samples generated by oLLVM were used, includ-
ing samples without obfuscation to handle Clang attacks. The
obfuscation function of oLLVM applied the flattening of the
control flow, the instruction substitution, and the addition of
the fake control flow 0 to 1 times each. So, there are eight
combinations of obfuscation functions. Since we prepared 300
obfuscated samples for each type, the obfuscated samples are
2400 samples for each malware type. Since there are three
types of IoT malware used for attack and defense, the total
number of obfuscated samples was 7,200.

B. Creating a Baseline Image Classifier
Mirai, Lightaidra, and Bashlite, the targets of this attack,

are classified with 87% accuracy in average by our baseline
classifier. The confusion matrix of the baseline classifier is
shown in the Figure 3 (a). The vertical axis is the true malware
family, and the horizontal axis is the inferred malware family.
The accuracy of Tsunami and Berbew is low due to the
small number of samples, but it can be solved by using a
large data set. Occamy, Mploit, and Skeeyah are considered
Mirai in some of the classification results, suggesting the
existence of two classes in their code similarity to Mirai
and Occamy, but are shown here as the same according
to the ground truth. Since this research aims to verify the
attack effect by obfuscating the source code and evaluating its
countermeasures, we will not discuss this problem in-depth.

TensorFlow and Keras were used to create the CNN. The
CNN model was based on VGG16 [21] . We trained with an
epoch number of 25, an optimization function of SGD, and a
batch size of 6. The learning rate was changed according to the
number of epochs and was reduced to 0.01 at the beginning
of learning and to 0.001 when the number of epochs was 15
or more. The accuracy of the baseline classifier trained using
the collected malware was about 78%.

C. Validating Obfuscator-LLVM-based Obfuscation Attack
The obfuscated malware binaries made by oLLVM were

misclassified by VGG16 based image classifier for all the
attacked malware families, Mirai, Lightaidra, and Bashlite. We
attacked the baseline malware image classifier by replacing the
obfuscated images with test data for each malware family tar-
geted. The figure 3 (b) and the figure 3 (c) show the confusion
matrix after the code obfuscation attack. The classification per-
formance of the baseline malware classifier before the attack
is compared with that of the Clang and oLLVM attacks. The

baseline classifier can classify the attacked malware families
with 87% accuracy in average before the attack, but when the
two attack methods are applied, the attacked malware families
are all misclassified for both methods (circled on the matrix).

Since the attack effect using Clang is recognized, it is
considered that the impact of section relocation through LLVM
is significant. However, all attacks by Clang are classified into
the same family. Since there is no randomness and only the
same binary can be generated, it is presumed that the attack
performance by itself is low.

This experiment confirmed that the obfuscation process
applied at compile time could have a specific effect as a
straightforward attack on the image classification method of
malware.

D. Validation of Countermeasures by Training with Obfus-
cated Samples

We confirmed that the malware image classifier trained
with obfuscated malware binaries made by oLLVM could
classify with an accuracy of 100% the malware family with
obfuscation as the obfuscated original malware family. Since
the effectiveness of the obfuscation process attack against
the image classification method was confirmed, we set up
a dataset of binary images of the collected malware and
obfuscation samples. and evaluated the countermeasure by
training, including the obfuscated samples. The confusion
matrix of the classifier trained with obfuscated samples are
shown in Figure 4. Mirai o, Lightaidra o, and Bashlite o
are new malware families trained with obfuscated samples.
Obfuscated Mirai, Lightaidra, and Bashlite were classified
with 100% accuracy by training with obfuscated samples
(circled on the matrix). Furthermore, the classification of the
obfuscated samples did not affect the classification results of
existing malware families.

V. CONCLUSION

By combining the publicly available malware source code
with readily available source code obfuscation tools, it is
possible to construct an effective attack that bypasses image
classifiers relatively simply. This paper presented an attack on
malware image classification methods by obfuscation applied
to source code and a countermeasure with training using
obfuscated samples.

Obfuscation applied at compile-time is effective as an attack
method on IoT malware image classification. Since it is easy
to add oLLVM obfuscation to the malware production process,
it is conceivable that malware with obfuscation protection will
increase. Since this attack can be addressed by training with
obfuscated samples, when using a classifier based on image
classification, it should be considered in advance to train with
obfuscated samples.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-
bers JP20K11772 and JP21K11847.



(a) Pre-attack Baseline Classifier (b) Attack by Clang (no obfuscated) (c) Attack by oLLVM (obfuscated)

Fig. 3. Confusion Matrix Before and After the Code Obfuscation Attack

Fig. 4. Confusion Matrix of Trained Classifier with Obfuscated Samples

REFERENCES

[1] SonicWall, “2023 sonicwall cyber threat report: Threat intelligence,”
https://www.sonicwall.com/2023-cyber-threat-report, accessed: 2023-
04-27.

[2] A. Moser, C. Kruegel, and E. Kirda, “Exploring multiple execution paths
for malware analysis,” in 2007 IEEE Symposium on Security and Privacy
(SP’07). IEEE, 2007, pp. 231–245.

[3] B. Anderson, C. Storlie, M. Yates, and A. McPhall, “Automating
reverse engineering with machine learning techniques,” in Proceedings
of the 2014 Workshop on Artificial Intelligent and Security Workshop,
ser. AISec ’14. New York, NY, USA: Association for Computing
Machinery, 2014, p. 103–112. [Online]. Available: https://doi.org/10.
1145/2666652.2666665

[4] E. Cozzi, M. Graziano, Y. Fratantonio, and D. Balzarotti, “Understand-
ing linux malware,” in 2018 IEEE symposium on security and privacy
(SP). IEEE, 2018, pp. 161–175.

[5] A. Sami, B. Yadegari, H. Rahimi, N. Peiravian, S. Hashemi, and
A. Hamze, “Malware detection based on mining api calls,” in Pro-
ceedings of the 2010 ACM symposium on applied computing, 2010, pp.
1020–1025.

[6] B. Kolosnjaji, A. Zarras, G. Webster, and C. Eckert, “Deep learning for
classification of malware system call sequences,” in Australasian joint
conference on artificial intelligence. Springer, 2016, pp. 137–149.

[7] J. Z. Kolter and M. A. Maloof, “Learning to detect and classify malicious
executables in the wild.” Journal of Machine Learning Research, vol. 7,
no. 12, 2006.

[8] L. Nataraj, V. Yegneswaran, P. Porras, and J. Zhang, “A comparative
assessment of malware classification using binary texture analysis and
dynamic analysis,” in Proceedings of the 4th ACM Workshop on Security
and Artificial Intelligence, 2011, pp. 21–30.

[9] P. Junod, J. Rinaldini, J. Wehrli, and J. Michielin, “Obfuscator-LLVM
– software protection for the masses,” in Proceedings of the IEEE/ACM
1st International Workshop on Software Protection, SPRO’15, Firenze,
Italy, May 19th, 2015, B. Wyseur, Ed. IEEE, 2015, pp. 3–9.

[10] M. Kalash, M. Rochan, N. Mohammed, N. D. Bruce, Y. Wang, and
F. Iqbal, “Malware classification with deep convolutional neural net-
works,” in 2018 9th IFIP international conference on new technologies,
mobility and security (NTMS). IEEE, 2018, pp. 1–5.

[11] H. Yakura, S. Shinozaki, R. Nishimura, Y. Oyama, and J. Sakuma,
“Neural malware analysis with attention mechanism,” Computers
& Security, vol. 87, p. 101592, 2019. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0167404819300264

[12] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath, “Malware
images: visualization and automatic classification,” in Proceedings of the
8th international symposium on visualization for cyber security, 2011,
pp. 1–7.

[13] J. Su, D. V. Vasconcellos, S. Prasad, D. Sgandurra, Y. Feng, and
K. Sakurai, “Lightweight classification of iot malware based on image
recognition,” in 2018 IEEE 42Nd annual computer software and appli-
cations conference (COMPSAC), vol. 2. IEEE, 2018, pp. 664–669.

[14] T. Hsien-De Huang and H.-Y. Kao, “R2-d2: Color-inspired convolutional
neural network (cnn)-based android malware detections,” in 2018 IEEE
International Conference on Big Data (Big Data). IEEE, 2018, pp.
2633–2642.

[15] X. Zhang, F. Breitinger, E. Luechinger, and S. O’Shaughnessy, “Android
application forensics: A survey of obfuscation, obfuscation detection and
deobfuscation techniques and their impact on investigations,” Forensic
Science International: Digital Investigation, vol. 39, p. 301285, 2021.

[16] S. Gu, S. Cheng, and W. Zhang, “From image to code: Executable
adversarial examples of android applications,” in Proceedings of
the 2020 6th International Conference on Computing and Artificial
Intelligence, ser. ICCAI ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 261–268. [Online]. Available:
https://doi.org/10.1145/3404555.3404574

[17] llvm.org, “The llvm compiler infrastructure project,” https://llvm.org,
accessed: 2023-04-27.

[18] CorvusForensics, “Virusshare.com,” https://virusshare.com, accessed:
2023-04-27.

[19] Google, “Virustotal,” https://virustotal.com, accessed: 2023-04-27.
[20] F. Ding, “Iot malware,” https://github.com/ifding/iot-malware, 2017,

accessed: 2022-03-14.
[21] K. Simonyan and A. Zisserman, “Very deep convolutional networks for

large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.


