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ABSTRACT

Wi-Fi signal based detection is widely implemented in indoor
action detection because of its low-cost and easy implemen-
tation. But it is still rarely used in equipment vibration
detection. Moreover, it is hard to detect multiple targets
where we need to monitor multiple equipments’ vibration
state such as in the factory environment. In this paper, we
propose a wireless based vibration sensing method using
Wi-Fi for factory equipment fault detection. First, we use
CSI amplitude data to distinguish sensing target equipments.
Then, we apply an anomaly detection method to detect faulty
machine operation. We conducted initial experiments to vali-
date the feasibility of our proposed fault detection method.
The experimental results show that our method detected
abnormal situations with an accuracy of 100%, while 10% of
normal situations were mistakenly recognized as abnormal.
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1 INTRODUCTION

The development of modern sensing technology towards digi-
talization and information has become an inevitable devel-
opment trend in the highly developed modern industry. The
forefront of the detection system is a sensor, which is the
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soul of the entire sensing system. In these decade, certain
companies use high-end technologies such as combination of
microphone and camera to keep detecting the factory equip-
ment’s condition. In this paper, we focus on the vibration of
equipments because equipments are in a vibrate condition
when it is working.

Vibration sensors play an important role in the sensing
system. Vibration sensors measure equipments’ vibration
frequency. When the equipment works in a bad condition,
vibration sensors will get the outlier frequency and execute
the next command to protect equipments. Motivated by
this, we propose a low-cost factory equipment fault detection
system based on Wi-Fi.

Although a large number of vibration sensors are active
sensors, in this paper, we propose a passive vibration sensor
based on wireless signal. Active vibration sensors need regu-
lar maintenance, in conclusion, the active vibration sensor
is working in a high-cost situation. We develop a low-cost
and more e�cient sensing system to reduce the electric and
maintenance costs.

In this research, our key idea is exploit the Wi-Fi channel
state information (CSI) to detect the vibration. Wi-Fi is a
low-cost and large-scale deployment technology that could
be implemented everywhere. Wi-Fi orthogonal frequency
division multiplexing (OFDM) communication [6] with a
multiple-input multiple-output (MIMO) technique [2] calcu-
lates radio channel response on many subcarriers for commu-
nication, which can be derived as CSI on IEEE802.11n/ac
compliant devices. Wi-Fi CSI-based detection methods have
been successfully applied to many indoor environment ap-
plications, such as fall detection [10], metal detection [12],
danger-pose detection [14]. These applications capture a hu-
man’s or object’s motions/actions which have the big range
of movements or oblivious feature that can easily a↵ect the
Wi-Fi CSI. Also, existing Wi-Fi CSI-based work on indoor
recognition is predominantly consider single object scenarios,
in other words, they cannot be deployed in a multiple target
situation.

As we know, it is not only one equipment in the factory,
for detecting the equipment’s vibrate condition in factory,
we face three problems.

• It is di�cult to get the changing features of the vibra-
tion frequency because the noise or the human motion
can cover the vibration details easily.

• It is not only one equipment in the factory. We need
to recognize equipment that needs to be monitored.
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• For equipment fault detection, we can only rely on
normal operation data because it is unrealistic to collect
abnormal operation data.

Our goal is to detect abnormal vibration conditions of the
vibrating equipment and show the possibility of monitoring
multiple vibrating equipments at the same time. Toward this
goal, we use di↵erent types of patch antennas attached to
factory machines to detect the vibration of di↵erent targets.
Inspired by 3D printing Wi-Fi [4], di↵erent types of patch
antennas will have di↵erent power influence on Wi-Fi CSI.
We therefore utilize di↵erent antennas to extract vibration
information for each machine and then utilize an anomaly
detection algorithm that requires only normal data of the
vibration of the equipment for fault detection.

The main contributions of this paper are as follows:

• To recognize equipments, we propose to use a Wi-
Fi patch antenna as an identity tag which will be
attached to a vibration machine. Based on a backscatter
phenomenon, di↵erent types of Wi-Fi patch antennas
can reflect CSI in di↵erent. In this paper, we use two
types of Wi-Fi patch antennas and show the possibility
of monitoring multiple vibrating equipments at the
same time.

• We conduct experiments and show that our fault detec-
tion system recognized abnormal frequency situation
as anomaly with an accuracy of 100%, while 10% of
normal situations were mistakenly recognized as abnor-
mal.

• We also validated that our fault detection system clas-
sifies four kinds of vibration frequency based on the
Wi-Fi CSI with an accuracy of 88%.

The rest of this paper is organized as follows. In Section 2,
we review related work. The fault detection system is de-
scribed in Section 3, followed by experimental details and
performance evaluation in Section 4. In Section 5, we conclude
the paper with some highlights of the future work.

2 RELATED WORK

In this section, we review related works on traditional vibra-
tion sensor and indoor detecting with Wi-Fi CSI.

2.1 Traditional Vibration Sensor

Most of the traditional vibration sensors require power supply.
The most traditional sensors are required to be extremely sen-
sitive to vibration, and have strong robustness and durability,
so they all has a very complex structure [1]. The equipment
monitoring system consists of not only vibration sensors,
but also a framework for collecting and analyzing vibration
information to monitor the operating conditions of the equip-
ment. Therefore, maintaining this analysis framework is also
very important [5]. In summary, a complete set of traditional
equipment detection system not only requires the cost of the
vibration sensor itself, but also requires power supply and
additional maintenance costs.

2.2 CSI-Based Indoor Detection

Recently, Wi-Fi CSI-based system have been broadly used
for indoor sensing. The Wi-Fi CSI based sensing systems are
low-cost and can be implemented easily as the system needs
no specialized infrastructure. Wi-metal [12], for example,
employs the Wi-Fi CSI amplitude values for recognizing
di↵erent kinds of metal. The Wi-Fi CSI sensing is also used
in the indoor health care such as Wi-Fall [10], which utilizes
CSI to detect human falling motion in indoor environments.
Danger-pose detection [14] in bathroom monitors human
motion in the privacy situation, which employs an anomaly
detection algorithm to avoid collecting the danger pose data.
The Wi-wheat [13] employs CSI to classify the wheat moisture
content through the SVM classifier, showing the possibility
to classify the small changes in the target.

These are examples of Wi-Fi indoor human activity mon-
itoring and static target classification. There are very few
examples of using Wi-Fi signals to monitor vibration tar-
gets. ART utilizes Wi-Fi signals to eavesdrop the audio from
speakers [11]. The basic idea of ART lies in an acoustic-
radio transformation algorithm, which restores the sound
of the speaker by examining the CSI changes a↵ected by
speaker metal component. 3D printing Wi-Fi [4] uses a 3D
printed backscatter module to a↵ect the Wi-Fi signal when
the module changes its condition. Although these methods
successfully realized CSI-based vibration sensing, multiple
targets are not in consideration.

3 VIBRATION SENSOR FOR

FACTORY EQUIPMENT FAULT

DETECTION SYSTEM

3.1 System Overview

Figure 1 illustrates a Wi-Fi CSI-based vibration sensor for
factory equipment fault detection system. The CSI based
vibration sensor consists of four blocks: CSI acquisition, pre-
process, target identifying, and fault detection blocks. We
first set up vibrators with a di↵erent type of patch anten-
nas attached. A data acquisition block consists of a Wi-Fi
transmitter and receiver, where CSI data is collected. The
collected CSI data is passed to a pre-processing block, which
performs amplitude extraction and applies a band-pass filter
to denoise unnecessary noise components. Finally, to focus on
the vibrating, we perform background subtraction to move
out the static environment content. In a target identifying
block, we utilize a classifier to distinguish target machine
based on the patch antenna attached to each machine. Then
we apply an anomaly detection algorithm in fault detection
block to detect faulty situations.

Following subsections present details of each block.

3.2 CSI Acquisition Block

Our fault detection system utilizes Wi-Fi CSI to monitor the
vibration status of multiple equipment. Wi-Fi not only adopts
OFDM technique in the physical layer, but also makes full use
of MIMO with IEEE802.11n/ac in most existing commodity
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Figure 1: Overview of Wi-Fi CSI based vibration
sensor for factory equipment fault detection system.

Wi-Fi devices. In OFDM, the entire spectrum (for example,
20MHz or 40MHz in IEEE802.11n) is divided into multiple
orthogonal subcarriers [8, 9]. In 802.11n/ac, each MIMO
link includes multiple subcarriers and each subcarrier has an
independent channel frequency response characterized by CSI.
CSI means Channel State Information, which illustrates the
channel frequency response of each subcarrier in the OFDM.
The channel frequency response of the i-th subcarrier can be
written as

hi = |hi| exp\hi, (1)

where |hi| denotes the amplitude and \hi denotes the phase
information for the i-th subcarrier.

In our fault detection system, we exploit a di↵erent type
of patch antennas as identity tags for target identification be-
cause they will have di↵erent reflection to channel frequency
response |hi|. We leverage CSI amplitude |hi| for fault detec-
tion since the amplitude |hi| will have great alter between
di↵erent patch antennas.

3.3 Pre-Processing Block

As shown in Fig. 1, the pre-processing block consists of ampli-
tude extraction, band-pass filter, and background subtraction
sub-blocks.

In an amplitude extraction sub-block extracts CSI ampli-
tude di↵erence data for equipment vibration fault detection.
We utilize CSI tool [3] that derive CSI from an Intel Wi-Fi
Link 5300 NIC. Although 802.11n uses at least 52 subcarriers,
we can only derive CSI for 30 subcarriers using CSI tool. We
extract the amplitude in the raw CSI which extracted by the
CSI tool as a complex number as shown in Equation (1).

In a band-pass filter sub-block, we apply a band-pass filter
to reduce random noise embedded in the received CSI data
packets. To improve the e�ciency of the experiment and
get more data packets within a certain period of time, we
set the data packet sampling rate to 100Hz. According to
the sampling theorem, a series of time-varying CSI contains
frequency components from 0 to (Fs/2) Hz, where Fs is a
sampling frequency. Since human activities usually include

low-frequency content [7] and the sampling frequency Fs

is much greater than the maximum vibration frequency of
the vibrator used in our experiments, many redundant high-
frequency noises will be generated. We used a brush-less
direct current (DC) motor in our experiment. The DC motor
work within a frequency range of 0–15Hz. We set the lower
and upper cut-o↵ frequencies of the band-pass filter as 4 and
16Hz, respectively. We use a Butterworth band-pass filter at
subcarrier level to eliminate low-frequency content caused by
human activities and high-frequency noise.

In a background subtraction sub-block, we focus on the
CSI changes brought by the vibration of the vibrator. The
CSI information not only includes vibration information of
the vibrator, but also environmental information. As the Wi-
bath danger pose detection [14] pointed out, among di↵erent
receiving antennas, the CSI di↵erence of the same subcarrier
is sensitive to activity, but not sensitive to environmental
changes. We use the CSI di↵erence between the receiving
antennas instead of directly using CSI for background sub-
traction.

Here we describe gCSI(t) using channel frequency response
of each reception antenna:

gCSI(t) = [ eH1,1(t), · · · , eH1,30(t), eH2,1(t), · · · , eH2,30(t)], (2)

where eHm,n is the band-pass filtered channel response of
Equation (1) for subcarrier n on reception antenna m.

In this work, we only used two antennas due to the limita-
tion of the devices used in our experiment. We can calculate
the di↵erence CSI

0(t) as:

CSI
0(t) = [ eH2,1(t)� eH1,1(t), · · · , eH2,30(t)� eH1,30(t)]. (3)

3.4 Target Identifying Block

The target identifying block consists of feature extraction
and target classifier sub-blocks.

A feature extraction block first extracts features from the
pre-processed CSI data, as shown in Fig. 1. As a feature,
we calculate standard deviation of each subcarrier in a fixed
length window. Feature values are calculated over the fixed
length window, which is slid with no overlap, as shown in
Fig. 2.

For example, if the slide window size w = 100, the feature
extraction process is as follows. (1) We split pre-processed CSI
data into data chunks at a length of 100 for each subcarrier.
The first chunk is [CSI

0(0), · · · , CSI
0(99)], and the second

chunk is [CSI
0(100), · · · , CSI

0(199)], etc. (2) We calculate
standard deviation of each chunk.

In a target classifier sub-block, feature vectors, consisting
of standard deviation of subcarriers, are fed into a supervised
target classifier. We don’t limit the classifier algorithm. In
this paper, we utilize a random forest classifier to distinguish
the type of patch antennas.

3.5 Fault Detection Block

The fault detection block exploits anomaly detection algo-
rithm to identify the normal vibration state and abnormal
vibration state of the di↵erent equipment. Although there
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Figure 2: Example of slide windowing.

are many algorithm of the anomaly detection, we utilize the
one-class support vector machine (SVM). Gaussian Radial
Basis Function (RBF) is used as the kernel.

In the fault detection block, the first process is to load a
machine learning model based on the result of target identi-
fying. For example, we load the model for type A antenna
when the target identifying result is type A.

We then operate a normalization process in order to achieve
high detection performance. Note that the fault detection
block uses di↵erence CSI given in Eq. (3) instead of standard
deviation over sliding window calculated in Section 3.4. The
normalized value Yi for a fault detection classifier is calculated
as:

Yi =
Xi �Xmean

Xmax �Xmin

, (4)

where Xi represents a value in di↵erence CSI given in Eq. (3),
Xmean , Xmax , and Xmin are the average, maximum, and
minimum of di↵erence CSI in training data set, respectively.

We train a one-class SVM classifier model with CSI data
collected under the normal working frequency. In our fault
detection system, we regard that the machine is in abnormal
operation when the working frequency is outside of frequen-
cies labeled as normal.

4 EXPERIMENT

We conducted experiments in an indoor line-of-sight (LOS)
environment with no human.

4.1 Experiment Environment

Figure 3 shows an experiment setup. We installed two Toshiba
dynabook laptops equipped with Intel 5300 NIC as a Wi-Fi
transmitter and receiver at a distance of 4 meters. A vibration
machine was installed in the middle of the transmitter and
receiver. The vibration machine was implemented with a TP-
3641EB-CM-5-H00-12 brush-less DC motor. Eccentric motor
coupling made from iron was attached to the motor shaft
to enhance vibration. The motor’s working frequency is in a
range of 0–15Hz, which can be controlled from a controlling
micro-controller board. The DC motor is supported dy a

(a) (b)

Figure 3: Experiment setup: (a) vibrator, (b) two
types of patch antennas.

flexible camera arm not to disturb vibration. Note that there
was no human around this testing field during the experiment.

We attached two types of patch antennas, type A and B,
to the vibrator and collected CSI data while the vibrator
motor operated in 0, 5, 10, and 15Hz. CSI data while no
patch antenna attached was also collected. We name CSI
data sets as Zf , where Z 2 {A,B,None} represent antenna
type and f 2 {0, 5, 10, 15} represents operating frequency in
Hertz. For example, A10 denotes the set of CSI data collected
while the vibrator motor operated in 10Hz with the type A
antenna attached. Type None corresponds to no antenna
situation. We also define an aggregated sets as:

Z =
[

f2{0,5,10,15}

Zf . (5)

We collected CSI data for 20 minutes in each condition with
a sampling frequency of 100Hz. The length of CSI data is
therefore 120,000, i.e., |Zf | = 120000.

4.2 Target Identifying Performance

We first evaluated target identifying performance. From
datasets A, B, and None, we derived feature vectors, i.e.,
standard deviation of each subcarrier in each window. The
sliding window size w defined in Section 3.4 was set to 100.
We therefore derived 1,200 feature vectors for each subcarrier
in each of A, B, and None situations. Note that the size of
each feature vector is 30 because we derive CSI data using
802.11n CSI tool that only provides CSI for 30 subcarriers.
We took 80% of feature vectors for training the target identi-
fying model and tested the performance with the remaining
20% of data.

Figure 4 shows a confusion matrix of target identifying
result. Figure 4 indicates that target identifying method
successfully identified antenna type with a recall of 88.1%
and with an F1 score of 88.2%. This result indicated the
possibility of equipment identification using di↵erent types
of patch antenna.

4.3 Fault Detection Performance

We next evaluated fault detection performance. In this eval-
uation, we assume that the machine is abnormal when the
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Figure 4: Confusion matrix of target identifying clas-
sification result.

vibrator stops, i.e., operating in 0Hz. We therefore put the la-
bel ‘abnormal’ to Z0 and the label ‘normal’ to

S
f2{5,10,15} Zf ,

where Z 2 {A,B}. Note that we ignored the dataset None
as we don’t monitor faulty status when no antenna is attached
to machines.

As described in Section 3.5, we trained the fault detection
model for each type of antennas. The fault detection perfor-
mance was evaluated with the assumption that the target
identifying process successfully identified antenna types. For
each model, we took 80% of Zf for training and tested with
the remaining 20% of the data.

Figure 5 shows confusion matrices of fault detection result
for type A and B antennas. From Fig. 5, we can confirm that
our fault detection system detected abnormal situations with
an accuracy of 100%, while 10% of normal situations were
mistakenly detected as ‘abnormal’. We found no influence of
antenna di↵erence in this experiment.

4.4 Fault Detection Performance When

Target Identifying Failed

Remind that the target identifying performance, presented
in the previous subsection, was also not 100% accuracy. Re-
ferring to Fig. 4, for example, type A antenna was classified
into type B antenna for 12.50%. In this situation, type A
antenna data will be fed into type A fault detection model.

We evaluated the fault detection performance in these
situations. We trained fault detection model with the data
for one type of antenna and tested with the data for another
antenna. For type A model test, for example, we trained
the fault detection model with a dataset A and tested with
B. ‘Normal’ and ‘abnormal’ labels were given in the same
manner as described above.

The results were all the same: all trials fell into ‘abnormal’.
Fault detection performance was also evaluated with a dataset
of None, which also fell into ‘abnormal’. These results are
natural because data for di↵erent antenna type was not fed
into fault detection model for training as ‘normal’. We can
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Figure 5: Confusion matrix of fault detection result
for (a) type A and (b) type B antennas.

conclude that target identifying performance has significant
influence on fault detection performance. We therefore need
to more improve target identifying performance.

4.5 Frequency Identification Performance

In machine operation monitoring, frequency monitoring is
also useful. We therefore evaluated operating frequency iden-
tification performance as a supplement. We directly fed di↵er-
ence CSI into a random forest classifier to identify operating
frequency f 2 {0, 5, 10, 15}. In the same manner as in the
fault detection block, the frequency identification classifier
was separately trained for each type of antennas. We took
80% of data for training and tested with the remaining 20%
of the data.

Figure 6 shows confusion matrices of frequency identifica-
tion result for type A and B antennas. From Fig. 6, we can
confirm that our fault detection system identified operating
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Figure 6: Confusion matrix of frequency identifica-
tion result for (a) type A and (b) type B antennas.

frequency with an average accuracy of 90.38% and 88.51% for
type A and B antennas, respectively. These results indicated
that the Wi-Fi CSI could be used not only for fault detection,
but also for vibration frequency sensing.

5 CONCLUSION AND FUTURE WORK

In this paper, we presented an initial attempt on Wi-Fi
CSI based vibration sensing method for factory equipment
fault detection. Our system performs two-step estimation:
identifies di↵erent type of patch antennas and then performs
equipment fault detection. There are multiple equipments
in a factory. We therefore first identifies a target equipment
using patch antenna and then focus on the target for fault
detection. As we can only derive normal operation data,
we employ anomaly detection method for fault detection.
Experimental results revealed that our fault detection system
successfully detected abnormal situations with an accuracy

of 100%, while 10% of normal situations were mistakenly
detected as abnormal.

Our initial attempt used a single vibrator and di↵erent type
of patch antenna to show the possibility of monitoring multi-
ple targets by Wi-Fi CSI. As CSI is sensitive to the changes
of a surrounding environment, we conducted our experiment
where no human was around. We also used transmitter, re-
ceiver, and vibrator at fixed locations in our experiment. In
a practical environment, the surrounding environment is al-
ways changed. Therefore, in the future work, we will design a
method to reduce the influence of a surrounding environment
and improve target detection performance. Moreover, we will
conduct experiments with multiple vibrators with di↵erent
types of patch antenna.
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