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Abstract—Sensor localization is one of the big problems when
building large scale indoor sensor networks because GPS is
unavailable in indoor environments. In this paper, we propose a
sensor localization system using WiFi APs as anchors. WiFi APs
are largely installed in indoor environments and are managed by
a network system manager. Using WiFi APs as anchors, we can
localize sensor nodes with neither newly deployed anchor nodes
nor user cooperation.

As a first step of our sensor localization system, this paper
presents a WiFi AP-RSS monitoring system using sensor nodes.
Sensor nodes are equipped with ZigBee (IEEE 802.15.4) modules,
which cannot demodulate WiFi (IEEE 802.11) signals. We there-
fore developed a cross-technology signal extraction scheme with an
AP recognition scheme on sensor nodes. We herein describe the
design and implementation of our AP-RSS monitoring system.
The experimental evaluations demonstrated that the proposed
AP-RSS monitoring system successfully recognized WiFi APs
with detection errors less than 10 %. We also confirmed that
the proposed system monitored AP-RSS with an average error
of 1.26 dB.

Index Terms—WiFi AP anchors, sensor localization, cross-
technology communication.

I. INTRODUCTION

Sensor networks play an important role in many fields
such as security, agriculture, fishing, forestry, construction,
transportation, and environmental monitoring. In sensor net-
works, sensor location is important for recognizing sensing
area, target tracking, and a network routing. Building sensor
network systems always require to localize all the sensor
nodes.

Sensor location is usually derived by using global posi-
tioning system (GPS) or manual measurements. We face a
sensor localization problem when we build a large scale sensor
network in an indoor environment, where GPS is unavailable.
The BEMS (Building Energy Management System) and a se-
curity system are typical examples of large scale indoor sensor
network systems. The sensor localization problem prevents
sensor networks from becoming more prevalent.

To mitigate sensor localization problem, there have been
so much literature reporting indoor localization systems [1–
3]. These studies have primarily investigated reduction in
deployment costs [4–13] or accuracy improvement [14–20].
Although these studies have successfully reduced the cost of
sensor localization, they require user cooperation or anchor
nodes whose location is manually measured.

Our goal is to realize an indoor sensor localization system
that requires no newly deployed anchor nodes. In this paper,
we propose an indoor sensor localization system using WiFi
APs as anchors. WiFi APs are largely installed in many indoor
environments and their locations are managed by a network
system manager. We send specific signals from multiple WiFi
APs and monitor the received signal strength (RSS) on sensor
nodes. We then calculate locations of sensor nodes using an
RSS-based localization scheme such as triangulation.

As a first step of the sensor localization system using
WiFi APs, this paper presents a WiFi AP-RSS monitoring
system using sensor nodes. Sensor nodes are equipped with
ZigBee (IEEE 802.15.4) modules and cannot demodulate WiFi
signals. To measure RSS of WiFi signals on sensor nodes, we
developed a cross-technology signal extraction scheme. In this
scheme, we employ a signal folding technique presented in
ZiFi [21] and retrieve AP-RSS with a simple filtering method.

In our previous work, we presented an AP-RSS monitoring
scheme with a simple AP recognition using non-overlapping
channels [22]. Although the AP recognition effectively works
in some environments, recent dense WiFi deployment makes
it difficult to use non-overlapping channels on each AP. In this
paper, we extend our previous work to safely distinguish APs;
beacon intervals with specific constraints are used as AP IDs.

By implementing the RSS monitoring system using a sensor
node MICAz, we show the feasibility of our sensor localization
system. We also conduct experiments to show that our moni-
toring system has enough performance to build a localization
system.

Specifically, our main contributions are fourfold:
• We propose a new indoor sensor localization system that

uses WiFi APs as anchors. Using WiFi APs, we can
localize sensor nodes without newly deployed anchors.

• We present the design of a WiFi AP-RSS monitoring sys-
tem for sensor nodes employing a ZigBee (IEEE 802.1.5)
module. Our design is based on an existing signal pro-
cessing technique combined with a signal recognition
method. We also apply a simple filtering method to
mitigate some practical issues for RSS measurement.

• We propose an accurate AP recognition scheme, which
is supported by a mathematical theorem. We conducted
experiments to show the accuracy of our AP recognition
scheme.
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Fig. 1. Overview of a sensor localization system using WiFi APs as anchors

• We show the feasibility of our sensor localization system
by experimental evaluations of the AP-RSS monitoring
system using an actual sensor node MICAz.

The remainder of this paper is organized as follows. Sec-
tion II describes our new sensor localization system as well as
design challenges. Section III designs an AP-RSS monitoring
system. In Section IV, we implemented our AP-RSS moni-
toring system using an actual sensor node. Experiments were
conducted in Section V to evaluate the basic performance. We
briefly look through related works in Section VI. Section VII
concludes the paper.

II. SENSOR LOCALIZATION SYSTEM USING WIFI APS

Figure 1 depicts an overview of a sensor localization system
using WiFi APs as anchor nodes. The sensor localization
system consists of sensor nodes, a localization server, and
WiFi APs installed in the environment. WiFi APs periodically
transmit a specific signal that can be detected by sensor nodes.

To initiate localization process, sensor nodes first detect
AP signals and measure received signal strength (RSS). The
sensor nodes then send the RSS information to a localization
server. Using the RSS information, the localization server
calculates sensor location by a localization scheme such as
multilateration. Here we assume that the localization server
holds AP location data. This assumption is natural because
the APs are usually managed by a network system manager.

Two challenges come up toward realizing the sensor local-
ization system using WiFi APs.

1) How to detect WiFi AP signals on sensor nodes?:
Sensor nodes cannot demodulate WiFi (IEEE 802.11) signals
since sensor nodes are equipped with ZigBee (IEEE 802.15.4)
modules. We need to pick WiFi AP signals out from many
WiFi device signals. We then measure RSS of the AP signals.

2) How to recognize sender APs?: Using the RSS informa-
tion, we can calculate distance between a sensor node and an
AP. For sensor localization, we need to associate the distance
with a specific sender AP.

In the following section, we design an AP-RSS monitoring
system that tackles the above two challenges.
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Fig. 2. AP signal detection by folding. 1) A sensor node periodically
samples RSS, 2) and convert the RSS samples into channel-usage samples.
3) The sensor node folds the channel-usage samples by beacon period, 4) and
calculate a sum for each column to get channel-usage sums. Periodic beacon
signals appear in a same column, which results in a large channel-usage sum.

III. AP-RSS MONITORING SYSTEM

A. Design Overview
The design of our AP-RSS monitoring system is divided

into three sub-designs: AP signal detection, AP recognition,
and AP-RSS extraction. To detect AP signals on sensor nodes,
we employ a simple signal processing technique presented
in ZiFi [21]. ZiFi is based on periodicity of AP beacon
signals. We therefore configure each AP to have different
beacon intervals with specific constraints to safely recognize
sender APs. We finally retrieve AP-RSS with a simple filtering
method based on beacon length.

The following three subsections give details of each sub-
design.

B. AP Signal Detection
Figure 2 depicts a process of AP signal detection. To detect

AP signals on a sensor node, the sensor node periodically
samples RSS in a specific channel. Note that all ZigBee
(IEEE 802.15.4) modules have an RSS measurement function
as an energy detection function defined in the standard [23].
The sensor node can detect WiFi signals because both ZigBee
and WiFi are using a 2.4-GHz band (Fig.3a). Figure 3b shows
an example of WiFi signals on ZigBee channel 19 retrieved
by a MICAz sensor node. Because ZigBee modules provide
average RSS over 128 microseconds, which is defined in the
standard, we set the sampling period to 128 microseconds not
to miss WiFi signals while minimizing a sampling rate.

The sensor node converts the each RSS sample into a
channel-usage sample: 0 for clear and 1 for busy. We use
−77 dBm as a threshold for channel-usage determination. This
threshold follows after the default threshold of a CC2420
IEEE 802.15.4 module for clear channel assessment [24].

We then fold the channel-usage samples by the AP beacon
period and create a channel-usage matrix. Consider folding of
beacon signals whose interval is t. Because time length of each
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Fig. 3. (a) WiFi and ZigBee channels, and (b) WiFi signals on ZigBee
channel 19 retrieved by MICAz

channel-usage sample is 128 microseconds, we can calculate
a beacon period B as t/(128× 10−6). We then calculate sum
for each column in the channel-usage matrix. We name this
sum as channel-usage sum.

We can detect APs by finding columns whose channel-usage
sum is large enough. Beacon signals whose interval equals to
the folding period appear in a same column. Large channel-
usage sum therefore indicates that there are beacon signals
whose interval equals to folding period, as shown in Fig. 2.

Because a channel-usage sum is related to the number of
folding NF , we cannot use a channel-usage sum itself; rather
we use a superposition-rate defined as a ratio of channel-usage
sum to NF . Beacon signals are found when a superposition-
rate is above a threshold. We conduct a preliminary experiment
to determine the number of folding NF and a superposition-
rate threshold in Section V-A.

C. AP Recognition

To safely detect each AP on sensor nodes, we apply
the signal multiplexing technique presented in FreeBee [25].
We configure APs to transmit beacon signals with different
intervals that are non-multiples each other. We can easily rec-
ognize beacon signals having non-multiple intervals by the AP
detection technique presented in the previous subsection. This
simple recognition technique is supported by the following
theorem.

Theorem 1. Let tA and tB be positive integers. When we fold
beacon signals of interval tB by fold period tA, the beacon
signals appear in a same column in a channel-usage matrix

0 0 0 1 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 0

lcm(tA, tB)

tA

tA

Fig. 4. Beacon signals of interval tB and of length lcm(tA, tB) folded by
period tA

at most every lcm(tA, tB)/tA rows, where lcm(tA, tB) is the
least common multiple of tA and tB .

Proof: We prove by contradiction. Suppose beacon sig-
nals of interval tB appear twice in a same column within
lcm(tA, tB)/tA rows. Length of channel-usage samples cor-
responding to lcm(tA, tB)/tA rows is lcm(tA, tB), as shown
in Fig. 4. Thus, positive integers m and n exist such that

m · tB = n · tA < lcm(tA, tB). (1)

This equation contradicts that lcm(tA, tB) is the least common
multiple of tA and tB . Therefore, the theorem follows.

If tA is not a multiple of tB , lcm(tA, tB) > tA. Beacon
signals of interval tB therefore appear in a same column at
most every two rows when we fold the beacon signals by
fold period tA. We can theoretically remove beacon signals of
interval tB using a superposition-rate threshold greater than
0.5.

We note that almost all the APs available today has default
beacon interval of 100 TU (TU: time unit = 1024 microsec-
onds, defined in the standard [26]). When we determine a
beacon interval, we need to avoid multiples and divisors of
100.

In a real environment, beacon frames are delayed because
of a CSMA/CA mechanism. Delayed beacons can be detected
falsely as beacons of similar interval. To reduce false detection,
we remove pairs of beacon intervals that can be falsely de-
tected using algorithm 1. The function p(A,B) in algorithm 1
is the probability that beacon signals of interval A are detected
as interval B signals.

Configuring a beacon interval on all the WiFi APs is
sometimes impractical. In this case, we have an option to use
ZigBee channels to recognize sender APs; we sample RSS on
different ZigBee channels and detect AP signals whose interval
is 100 TU. Applying a signal detection scheme presented in
the previous subsection, we can separately detect signals from
different APs.

This simple approach is based on two observations.
1) Three non-overlapping WiFi channels: As shown in

Fig. 3a, there are three non-overlapping WiFi channels: 1, 6,
and 11. A network system manager tries to use these non-
overlapping channels on each AP to minimize interference.
We can assume that APs around a sensor node use different
channels, which are typically non-overlapping channels.



Algorithm 1 Remove inseparable pairs of beacons
Require: a set of non-multiple beacon intervals L, threshold

for false detection rate.
Ensure: L ⇐ a set of non-multiple beacon intervals

1: while sizeof(L) > 1 do
2: all inseparable[ ] = 0
3: for b int in L do
4: for fold bint in L \ {b int} do
5: if p(b int, fold bint) ≥ threshold

or p(fold bint, b int) ≥ threshold then
6: inseparable[b int] + +
7: end if
8: end for
9: end for

10: if all inseparable[ ] == 0 then
11: return L
12: end if
13: unuse bint ⇐ b int associated with

max(inseparable)
14: L ⇐ L \ {unuse bint}
15: end while
16: return L
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Fig. 5. Example of partial RSS problem. Only the gray part of a beacon
signal contributes to RSS within a 128-microsecond window shown in the
figure.

We need three APs for sensor localization using multilatera-
tion. Coincidentally, there are three non-overlapping channels
that are typically used on APs. We therefore sample RSS on
ZigBee channels 12, 17, and 22 that overlap WiFi channels
1, 6, and 11, respectively. If no AP is detected on ZigBee
channels 12, 17, and 22, the other channels are used for RSS
sampling.

2) Identical default beacon interval: Almost all APs avail-
able today are configured to use beacon interval of 100 TU,
which is the de facto standard default configuration. On some
APs, we cannot even change the beacon interval from 100 TU.
We can easily detect APs by folding channel-usage samples
by period B = 100× 1024× 10−6/(128× 10−6).

D. AP-RSS Extraction
After we detect AP beacon signals, we need to extract AP-

RSS from the sequence of RSS samples. Although we can
intuitively extract RSS samples corresponding to the columns
whose superposition-rate exceeds a specific threshold, the
extracted RSS samples are suffered from high RSS error. There
are two main reasons for this RSS error.
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Fig. 6. Example of RSS filtering in a partial RSS matrix. Black and gray
boxes indicate that the channel is busy. We first remove RSS samples less than
the channel-usage threshold (white boxes) and then cut off both the beginning
and the end of the signal (gray boxes).
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Fig. 7. Empirical cumulative distribution function of beacon length

1) CSMA delay:
Due to the nature of a CSMA mechanism in WiFi
MAC, beacon signals might be delayed. The intuitive
RSS extraction picks RSS samples on scheduled timing,
which results in the extraction of signals from other WiFi
devices.

2) Average RSS on a ZigBee module:
ZigBee modules can measure RSS averaged over 128
microseconds as defined in the standard. The ZigBee
module might provide partial RSS, i.e., average RSS of
a part of WiFi signal, as depicted in Fig. 5.

To minimize effects of the above two problems, we drop
RSS on both rising edge and falling edge of each beacon
signal. We first create an RSS matrix in a same manner
as the creation of a channel-usage matrix. We then extract
the columns corresponding to channel-usage matrix columns
whose superposition-rate exceeds a specific threshold. Figure 6
shows an example of the extracted columns of an RSS matrix.
We first remove RSS samples less than the channel-usage
threshold defined in Section III-B (white boxes). We next
remove the first and the last RSS samples on each row (gray
boxes). These steps extract RSS samples of the core of beacon
signals.

This simple filtering technique effectively works because
most of the beacons have length more than four RSS-sample
length, i.e., 512 microseconds. Figure 7 shows an empirical
cumulative distribution function of beacon length of WiFi APs
in our university building. More than 90 % of APs are sending
beacons whose length is more than 512 microseconds.



Fig. 8. AP-RSS monitoring system

IV. IMPLEMENTATION

To conduct experimental evaluations, we implemented an
AP-RSS monitoring system using off-the-shelf devices. Fig-
ure 8 shows our AP-RSS monitoring system. The AP-RSS
monitoring system could reveal RSS of three APs simultane-
ously.

We used a Raspberry Pi B+ employing a WiFi module WLI-
UC-G301N from Buffalo as a WiFi AP. OpenWrt, an open
source OS for WiFi APs, was running on Raspberry Pi.

We used a MICAz sensor node from Crossbow that utilizes
a CC2420 IEEE 802.15.4 module from Texas Instruments. We
developed a C program that samples RSS every 128 microsec-
onds and sends the RSS to a laptop via serial communication
interface.

The laptop was CF-Y8 from Panasonic. We developed a
python program that receives RSS from the sensor node and
extracts AP-RSS as described in Section III.

V. EVALUATION

To demonstrate the feasibility of the sensor localization
system described in Section II, we evaluated the detection rate,
false detection rate, and RSS error of our RSS monitoring sys-
tem. We first conducted a preliminary experiment to determine
the number of folding and a superposition-rate threshold. We
then evaluated the detection rate, false detection rate, and RSS
error.

A. Preliminary Experiment

We conducted a preliminary experiment to determine the
number of folding and a superposition-rate threshold, as de-
scribed in Section III-B. We installed a WiFi AP 2.5-meter
away from a sensor node that was connected to a laptop. We
then collected a sequence of RSS for one minute. The beacon
interval of the AP was fixed to 109 TU. The WiFi AP and
sensor channels were configured to 11 and 22, respectively.
These channels overlap as shown in Fig. 3a.

Figure 9 shows average superposition-rate as a function of
the number of folding NF ; error bars indicate minimum and
maximum superposition-rate. Figure 9 shows the following:

1) Average superposition-rate were always less than 100 %.
There were beacon transmission delays due to a
CSMA/CA mechanism.

2) Increase in the number of folding NF resulted in small
fluctuations of superposition-rate. When NF ≥ 30, the
variance of superposition-rate was less than 15 %. When
NF was small, change in a channel-usage sum had a
significant effect on superposition-rate.

3) Increase in NF resulted in decrease in average
superposition-rate. The beacon interval and RSS sam-
pling period were not exactly equal. Sampling period
error accumulated as NF increased and some beacon
signals appeared in a different column in a channel-
usage matrix.

Using the above results, we determined the number of
folding NF as 30 to retrieve a stable and high superposition-
rate. When NF = 30, superposition-rate was always greater
than 90 %. We therefore used a superposition-rate threshold of
80 %, which includes threshold margin of 10 %.

B. Detection Rate and False Detection Rate
We evaluated a detection rate and false detection rate to

confirm that our AP-RSS monitoring system can recognize
sender APs. A detection rate is the probability that beacon
signals of interval t are detected as interval t. A false detection
rate is the probability that beacon signals whose interval is not
t are detected as interval t signals.

We generated a set of separable beacon intervals as de-
scribed in Section III-C. The threshold of false detection rate
in algorithm 1 was 10 %. Beacon intervals were selected from
15 to 500 TU, which are practically used on actual APs. A
WiFi AP was installed 2.5-meter away from a sensor node
connected to a laptop that collected RSS samples. For each
beacon interval, we configured the AP to have the interval
and sampled RSS on the sensor for one minute. Using the RSS
samples, we calculated the detection rate and false detection
rate. The false detection rate of interval t had multiple values
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because there were multiple beacon intervals that is not t. We
therefore evaluated the maximum value of the false detection
rate for each beacon interval t.

Figure 10 shows the detection rate and maximum false
detection rate as a function of beacon interval. Figure 10 shows
the following:

1) The detection rate was greater than 95 % for all the bea-
con intervals. The minimum detection rate was 97.1 %
when beacon interval was 337 TU.

2) The maximum false detection rate was less than 10 % for
all the beacon intervals. The maximum false detection
rate was 7.76 % when beacon interval was 21 TU.

The above results demonstrated that our AP-RSS monitoring
system could successfully recognize beacon signals with a
probability of false detection less than 10 %.

C. RSS Error
To calculate RSS error, we compared AP-RSS with true

RSS. The AP-RSS is RSS derived by our system and the true
RSS is the RSS directly derived from a WiFi module. We first
configured a WiFi AP to have beacon interval of 93 TU and
installed the AP 12-meter away from a sensor node connected
to a laptop. We then collected a sequence of AP-RSS for four
seconds using our AP-RSS monitoring system. At the same
time, we measured true RSS by capturing beacon signals on
the laptop using a libpcap library. The AP-RSS and the true
RSS are averaged over four seconds. We collected the averaged
four-second AP-RSS as well as true RSS for 1,000 times.

Figure 11 shows AP-RSS and true RSS of each trial. We
revealed the following:

1) The AP-RSS exhibited similar fluctuation pattern to that
of the true RSS.

2) There was an offset between the AP-RSS and true RSS.
This offset was due to the bandwidth difference between
WiFi and ZigBee: WiFi bandwidth is 22 MHz, while
ZigBee bandwidth is 2 MHz. Antenna gain was another
source of the offset.
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For RSS error calculation, we compensated the offset be-
cause the effect of bandwidth difference and antenna gain
were almost constant. The offset was calculated as difference
between the average AP-RSS and average true RSS over 1,000
times.

Figure 12 shows a histogram of compensated RSS error.
The RSS error followed Gaussian distribution. The standard
deviation of compensated RSS error was 1.71 dB and the
average absolute error was 1.26 dB. More than 95 % of errors
were within 2×±1.71 dB = ±3.42 dB. We can conclude that
the RSS error was at the same order of RSS fluctuation due
to the environmental change.

VI. RELATED WORKS

In the field of indoor localization, previous studies have
primarily investigated reduction in deployment costs and ac-
curacy improvement. Most of these works are using WiFi
devices, which still can be applied to sensor nodes with ZigBee
modules.

Iterative multilateration [4, 5] uses localized nodes as new
anchor nodes, which reduces the number of initial anchor
nodes. However, many initial anchors are still required to



achieve small localization error in a large building. Crowd-
sourcing combined with fingerprinting localization [6–13] is
another approach which reduces deployment costs. For a
sensor localization system, it is difficult to get user cooperation
because almost all users are carrying no ZigBee devices.

In this paper, we focus on cross-technology RSS extraction
since we can employ existing localization method using RSS.
Previous works on accuracy improvement [14–20] is therefore
useful in our future work, i.e., localization using the extracted
RSS.

There is a new fingerprinting localization named ZiFind
which requires no anchor nodes [27]. ZiFind, however, re-
quires many WiFi devices called ZiFind mappers instead
of anchor nodes. Cross-technology communication have also
been studied [28–30], which requires special hardwares or
firmware modification on WiFi APs or sensor devices.

VII. CONCLUSION

In this paper, we present an AP-RSS monitoring system
using sensor node, as a first step toward a sensor localization
system using WiFi APs as anchors. We developed a cross-
technology signal extraction scheme to overcome the wireless
technology difference between WiFi and ZigBee. In our signal
extraction scheme, a signal processing technique presented in
an existing work is employed and combined with a simple
filtering method to extract AP-RSS on sensor nodes. We also
present a simple AP recognition technique that uses different
beacon intervals with some constraints on each AP. The
experimental evaluations showed that our AP-RSS monitoring
system successfully retrieved AP-RSS with an average error
of 1.26 dB while recognizing sender APs.
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