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Abstract—Bluetooth Low Energy (BLE)-based localization is a
promising candidate of indoor localization for low power mobile
and Internet of Things (IoT) systems. Localization accuracy of
BLE-based localization systems is lower than other localization
technologies relying on wideband wireless communication such
as WiFi due to limited channel bandwidth. In our previous paper,
we proposed an accuracy improvement method named separate
channel fingerprinting (SCF), which, however, suffers from a
high maximum localization error more than 6 meters. This paper
therefore presents 2-step separate channel fingerprinting (2S-
SCF). 2S-SCF first coarsely estimates location by conventional
BLE fingerprinting and utilizes SCF to estimate the fine-
grained location. We experimentally demonstrate that 2S-SCF
successfully reduced localization errors 95 % of time with a small
maximum localization error.

Index Terms—Indoor localization, Bluetooth Low Energy
(BLE), separate channel fingerprinting (SCF), channel diversity.

I. INTRODUCTION

Indoor localization is one of the fundamental components
in many Internet of Things (IoT) systems. For low-power
IoT devices, Bluetooth Low Energy (BLE) based localization
systems have been focused because of their both low power
operation and wide availability. BLE-based localization sys-
tems measure received signal strength (RSS) of BLE signals
on three advertising channels and estimate location.

Frequency separation of advertising channels deteriorate
localization accuracy [1]. BLE uses 2-MHz narrow-band
channels and tends to be affected by frequency selective
fading where channel gain is highly dependent on location.
In addition, big frequency difference up to 78 MHz between
advertising channels implies different channel responses on
three advertising channels, resulting in unstable RSS.

The literature has studied on accuracy improvement in
BLE localization systems [1–5]. In these approaches, RSS
outliers are excluded using filters to improve localization ac-
curacy. We also proposed BLE separate channel fingerprinting
(SCF), which is a fingerprinting localization method employ-
ing channel diversity to improve localization accuracy [6–8].
We experimentally proved that SCF successfully improved
localization accuracy by approximately 28.5 % compared to
localization without channel diversity.

Although SCF exhibits a small mean localization error, SCF
suffers from a big maximum localization error. Localization
errors are distributed in a wide range, which implies the low

reliability of SCF. Particle and Kalman filters might be helpful
to reduce localization errors [4, 9]. Stability of localization
results should be improved to reduce the influence of outliers.

In this paper, we present BLE 2-step SCF (2S-SCF),
which takes advantages of fingerprinting localization with and
without channel diversity. 2S-SCF is based on an observation
that probability of small localization errors is higher in finger-
printing without channel diversity compared to fingerprinting
with channel diversity. We first coarsely estimate location
without channel diversity and then employ channel diversity to
estimate a fine-grained location. We conducted experimental
evaluations in our university building to demonstrate effec-
tiveness of 2S-SCF.

Our main contributions are threefold:
• We show that both conventional BLE fingerprinting and

SCF suffer from a big maximum localization error more
than 6 meters. We also reveal that localization errors are
distributed in a wide range.

• We present the design of 2S-SCF, a 2-step fingerprinting
localization method that takes advantages of fingerprint-
ing with and without channel diversity. To the best of
knowledge, this is the first study focusing on stability of
localization accuracy in the field of BLE fingerprinting
localization.

• We experimentally evaluate 2S-SCF using actual BLE
devices in a corridor environment. The experimental
evaluations reveal that 2S-SCF effectively reduces max-
imum localization error.

The remaining of this paper is organized as follows. Sec-
tion II summarizes related work. Section III briefly presents
the design of SCF as well as its issues, followed by the design
of 2S-SCF in Section IV. In Section V, we evaluate localiza-
tion performance of 2S-SCF. Finally, Section VI concludes
the paper.

II. RELATED WORK

Wireless indoor localization technologies are well inves-
tigated and there are many published papers. We limit our
review in this section to BLE-based localization technologies.

To improve localization accuracy, many BLE-based local-
ization technologies borrow ideas from well studied WiFi
localization technologies. Using filters to reduce the influence
of RSS outliers is a simple but effective approach to im-
prove localization accuracy. Zhu et al. proposed a localization
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method combining Gauss filter and piecewise function in
model training of radio signal strength decay [2]. Zhu et al.
also filters out the distances based on geometric constraints to
remove RSS outliers in a location estimation phase. Particle
and Kalman filters also help to remove incoherent RSS
samples and incorrect localization results caused by RSS
outliers [3, 9]. Paterna et al. combines Kalman filter with
weighted trilateration to more improve localization accu-
racy [4]. Reducing the number of outliers is still important
in these methods to get stable localization results.

A stigmergic approach is another solution tackling the RSS
instability. The stigmergic approach shares localization results
among BLE devices that strengthen confident localization
results [10]. In the stigmergic approach, min-max localization
results [11] derived from multiple BLE devices are integrated.
Environmental changes on radio propagation are taken into
considerations by evaporation, which decreases the contribu-
tion of old localization results. Li et al. proposed an RSS
compensation method based on RSS fluctuations observed on
multiple BLE gateway devices [12]. 2S-SCF can be combined
with these methods to more improve localization accuracy.

For better localization accuracy, fingerprinting localization
using BLE is investigated because fingerprinting exhibits
good performance in WiFi localization systems [13]. Faragher
et al. investigated the feasibility of BLE-based fingerprint-
ing [1], which demonstrates that the BLE-based fingerprinting
achieved errors less than 2.6 meters 95 % of time with BLE
beacons installed at every 30 m2. Fingerprinting using neural
network has also been proposed [5], which, though, requires
huge amount of training data. BluePrint is another approach
of fingerprint-like localization [14]. BluePrint uses NUFO, i.e.
near, uncertain, far, and out, instead of RSS and perform
fingerprint-like localization with NUFO states of reference
BLE beacons. A NUFO state is determined by applying
threshold to RSS. The discretization into NUFO states reduces
the influence of RSS fluctuations and achieved errors less than
2.20 meters 75 % of time.

We also have reported BLE SCF employing channel di-
versity to improve fingerprinting localization accuracy [6, 7],
which is applicable in addition to other fingerprinting methods
to more improve localization accuracy. We experimentally
demonstrated that SCF improved localization accuracy by
28.5 % and achieved errors less than 2.01 meters 90 % of time.
SCF, however, suffers from a big maximum error problem;
the maximum localization error is bigger than the localization
without channel diversity.

III. SEPARATE CHANNEL FINGERPRINTING (SCF)
Separate channel fingerprinting (SCF) is a fingerprinting

localization method employing channel diversity to improve
localization accuracy [6, 7]. Figure 1 shows the overview of
SCF. SCF consists of training and estimation phases, as the
same as other fingerprinting methods do. BLE beacons are
installed in a localization target area and periodically sending
advertisement packets on three advertising channels. Training
phase constructs a fingerprint database that stores separate
channel fingerprints consisting of BLE beacon RSS measured
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Fig. 1. Overview of separate channel fingerprinting (SCF) [7]. SCF consists
of training and estimation phases. BLE beacons in a localization target area
are sending advertisement packets on three advertising channels. Training and
estimation phase measure RSS of the BLE beacons to calculate fingerprints,
which are used for location estimation. SCF separately handles RSS on three
advertising channels to employ channel diversity, while normal fingerprinting
uses no channel-information.

0 2 4 6
0

200

400

Fr
eq
ue
nc
y UCF

0 2 4 6
Localization error [meters]

0

200

400

Fr
eq
ue
nc
y SCF

Fig. 2. Localization error distribution for unified channel fingerprinting
(UCF) and separate channel fingerprinting (SCF). UCF is a fingerprinting
method without channel information.

on three advertising channels. Estimation phase also calculates
a fingerprint from RSS measured at a user location, which
is compared to the database fingerprints finding the nearest
database fingerprint to estimate location of the user.

We employ separate channel advertising because BLE
standard provides no application programming interface (API)
to recognize the channel where an RSS is measured. BLE
beacons apply a mask to restrict their advertising channel
and embed transmission channel information in advertisement
packets. We use Apple iBeacon-compatible advertisement
packets and embed channel number in a minor field. A
channel mask is periodically updated to send advertisement
packets on all the three advertising channels. Although BLE
standards defines no API for channel masking, many BLE
beacons in the market come with a channel masking API.

However, SCF suffers from a big maximum localization
error problem. A maximum localization error in SCF is greater
than that of unified channel fingerprinting (UCF), which
is the conventional BLE fingerprinting method that equally
deals with RSS on three advertising channels without channel
information.
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Fig. 3. Overview of 2-step separate channel fingerprinting (2S-SCF). In
step 1, 2S-SCF performs coarse localization, which coarsely estimates a target
location with all the database fingerprints without channel information. In
step 2, a target location is estimated using database fingerprints in a area
limited by the result of coarse localization with channel information.

Figure 2 shows distribution of localization errors of both
UCF (above) and SCF (below). We draw Fig. 2 using RSS
data collected in Section V. Although UCF and SCF show
small mean localization errors of 0.707 and 0.589 meters,
respectively, maximum errors of both SCF and UCF are more
than 6 meters.

IV. 2-STEP SCF (2S-SCF)

A. Key Idea

The key idea of 2S-SCF is that we take advantages of
both SCF and UCF. Based on Fig. 2, probability of small
localization errors is higher in UCF, while SCF shows a
smaller maximum localization error. 2S-SCF first coarsely
estimates the target location using UCF, then performs fine-
grained localization.

B. Overview

Figure 3 shows the overview of 2S-SCF. Here we assume
that a fingerprint database is constructed prior to localization.
2S-SCF estimates the target location in two steps. The first
step is UCF. We find database fingerprints nearest to a target
fingerprint without channel information and estimate the target
location. In the second step, we perform fingerprinting with
database fingerprints in a restricted area based on the result
of the first step. Database fingerprints outside of the restricted
area are ignored in this step.

2S-SCF again consists of training and estimation phases,
as the same as other fingerprinting methods do. Following
subsections describe details of the each phase.

C. Training Phase

In a training phase, we construct both separate- and unified-
channel fingerprint databases. We measure RSS of multiple
BLE beacons at many locations in a localization target area.
Let L be a set of training locations where RSS is measured.
We collect BLE advertisement packets from BLE beacons for
a specific time period at every location in L and measure
RSS of the packets, creating an RSS-sample set Ai for each
location i. To calculate separate-/unified-channel fingerprints,
we also define a subset Ai,j(c) ⊂ Ai consisting of RSS
samples of the BLE beacon j measured on the advertising
channel c ∈ {37, 38, 39}.

Let n denote the number of BLE beacons. A separate-
channel database fingerprint Si at the training location i is
a 3n-th vector including channel information:

Si = [si,1(37), si,1(38), si,1(39), si,2(37), · · · , si,n(39)] ,
(1a)

si,j(c) = med [Ai,j(c)] , (1b)

where med[ ] represents the median of the set. We note that
an element si,j(c) is marked as missing when Ai,j(c) is an
empty set , i.e., no advertisement packet from the beacon j
is received on the channel c at the location i.

For a unified-channel database fingerprint, we merge RSS
samples measured on three advertising channels. The unified-
channel database fingerprint Ŝi is an n-th vector:

Ŝi = [si,1, si,2, si,3, · · · , si,n] , (2a)

si,j = med




⋃

c∈{37,38,39}

Ai,j(c)



 . (2b)

D. Estimation Phase

An estimation phase performs localization in two steps.
1) Coarse Localization: We first measure RSS of BLE

beacons at the target location and calculate the unified-channel
target fingerprint T̂ in the same manner as in a training phase.
Let B be a set of RSS samples measured at the target location
and Bj(c) ⊂ B be a subset of RSS samples of the BLE
beacon j measured on the advertising channel c. The unified-
channel target fingerprint T̂ is calculated as:

T̂ = [r1, r2, r3, · · · , rn] , (3a)

rj = med




⋃

c∈{37,38,39}

Bj(c)



 . (3b)

We then perform coarse localization using the k-nearest-
neighbor (kNN) method. Coarse localization finds k of Ŝi

that are nearest to T̂ . Distance between fingerprints is de-
fined by root-mean-square. Let Y = [y1, y2, · · · , yk] and
Z = [z1, z2, · · · , zk] be any fingerprints. Distance D (Y, Z)
between the fingerprints Y and Z is defined as:

D (Y, Z) =

{√
1
m

∑k
l=1(yl − zl)2 (m ≥ k

2 ),

∞ (m < k
2 ),

(4)



where m is the number of elements available, i.e., not missing,
in both Y and Z. Elements missing in either Y or Z are
ignored in a root-mean-square calculation. We apply the
simple filtering method to reduce the influence of RSS outliers
as we define D(Y, Z) = ∞ when m < k/2; when the number
m of elements available both in Y and Z is less than half
of the number of elements k/2, we regard Y and Z are
significantly different.

The target location is finally estimated by calculating the
weighted center of coordinates corresponding to the k of the
nearest fingerprints. Let N̂k be a set of locations correspond-
ing to the nearest database fingerprints. Coordinates P̂ of the
target location is finally estimated as:

P̂ =

∑
i∈N̂k

1
D(Ŝi,T̂)

X(i)
∑

i∈N̂k

1
D(Ŝi,T̂)

, (5)

where X(i) is the coordinates of the location i. Note that
location estimation fails when the number of database finger-
prints having finite distance to the target fingerprint is less
than k.

2) Fine-Grained Localization: Using the set of RSS sam-
ples collected in a coarse localization, we calculate a separate-
channel target fingerprint T :

T = [r1(37), r1(38), r1(39), r2(37), · · · , rn(39)] , (6a)
rj(c) = med [Bj(c)] . (6b)

Instead of using all the database fingerprints, we calculate
distance between a database fingerprint Si and a target fin-
gerprint T for the limited number of database fingerprints. As
shown in Fig. 3, we only use database fingerprints collected in
a circular area of radius R centered on the estimated location
in coarse localization. We again choose k of database finger-
prints closest to a target fingerprint and estimate coordinates
P of the target location:

P =

∑
i∈Nk

1
D(Si,T )X(i)

∑
i∈Nk

1
D(Si,T )

, (7)

where Nk is a set of locations corresponding to the closest
database fingerprints.

We perform fine-grained localization only when coarse
localization successfully estimated a target location. Fine-
grained localization again has a chance to fail when the
number of database fingerprints, having finite distance to a
target fingerprint, in the limited area is less than k. An actual
value of the area-limit radius R is determined in Section V.

V. EVALUATION

To demonstrate the effectiveness of 2S-SCF, we conducted
experimental evaluations in a corridor in our university build-
ing.

A. Experiment Setup
Figure 4 shows an experiment setup. We choose an H-

shaped corridor in our university building as the localization
target area. We installed 24 Silicon Labs BLED112 beacons

BLE beacon
Reference location
Target location

10 meters

(a)

BLE Beacons

(b)

Fig. 4. Experiment setup. (a) 24 BLE beacons were installed in an H-shaped
corridor in a 19×32-m2 area. (b) Each BLE beacon is installed at a height
of approximately 1 meter on a tripod.

at a height of approximately 1 meter using tripods because
the attachment of objects to walls and ceilings in our build-
ing is restricted. BLE beacons were sending advertisement
packets every 30 milliseconds with a random delay up to 20
milliseconds and switched transmission channel at every 100
milliseconds with a random delay up to 200 milliseconds.
Note that channel switching in separate channel advertising
seems to require few hundreds of milliseconds, though the
BLED112 datasheet has no description about the latency
required for channel-mask update. We observed that 20 WiFi
APs were used in the same 2.4-GHz band in the target area,
which might have interfered with BLE advertisement packets.

We measured RSS of BLE beacons using an Apple Mac-
Book Pro receiver at 46 reference locations with approxi-
mately 2-meter grid, as shown in Fig. 4. At each reference
location, RSS samples were collected for 120 seconds. We cal-
culated unified-/separate-channel database fingerprints Ŝi, Si

at each reference location i.
RSS samples were then collected for 120 seconds at 7 target

locations. We divided 120-second data into 10-second sliding
windowed data and calculated unified-/separate-channel target
fingerprints T̂ , T for the each windowed data to estimate the
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Fig. 5. Localization accuracy and success rate as a function of area-limit
radius R. Increase in R resulted in increase in both localization accuracy
and success rate.

target location. k of kNN was set to 2 because we conducted
our experiments in a corridor consisting of straight lines.

We define two metrics to evaluate localization performance:
• Localization accuracy is the 95th percentile of localiza-

tion errors for all localization trials. Localization errors
are expected to be less than a localization accuracy 95 %
of time.

• Localization success rate is the rate of successful lo-
calization to all localization trials. As we described in
Section IV-D, we give up location estimation when the
number of database fingerprints having finite distance
from a target fingerprint is less than k in either coarse or
fine-grained localization. High localization success rate
indicates that sufficient number of database fingerprints
are available for many localization trials. Note that
localization success rate is affected by training fingerprint
locations.

B. Area-Limit Radius
To determine area-limit radius R used in fine-grained

localization, we first evaluated the localization performance
while changing R from 0.5 to 10.0 meters.

Figure 5 shows localization accuracy and success rate of
2S-SCF as a function of area-limit radius R. Figure 5 indicates
the following:

• Increase in R resulted in increase in both localization
accuracy and success rate. There is a trade-off between
localization accuracy and success rate because the lower
accuracy indicates better performance, while the higher
success rate indicates better.

• Localization success rate was almost saturated at ap-
proximately 60 % when R ≥ 2.0 meters. Increase in R
resulted in the increased rate of successful localization
owing to sufficient number of database fingerprints in the
limited area specified by R. On the other hand, many
localization trials failed when the coarse localization
result was far from an actual location, which resulted
in the saturated success rate. Large R still suffered from
the relatively low saturation of localization success rate
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Fig. 6. Empirical cumulative distribution functions (ECDFs) of localization
errors. 95 % probability is shown as a horizontal red dotted line, whose
intersections of ECDF lines indicate localization accuracy. Localization
accuracy of UCF, SCF, and 2S-SCF were 6.76, 2.60, and 1.00 meters,
respectively.

because of unstable RSS. 2S-SCF gives up location es-
timation in these cases to improve localization accuracy.

We decided to use R = 2.0 meters, which exhibited a
minimum localization accuracy with an almost saturated local-
ization success rate. A localization success rate was 59.5 %
at R = 2.0 meters. Note that localization success rates of
UCF and SCF, which are independent of R, were 85.4 % and
62.3 %, respectively.

C. Localization Accuracy
We then evaluated localization performance with R = 2.0

meters. In order to evaluate the relative performance, we com-
pared performance of following three localization methods:

• Unified Channel Fingerprinting (UCF) is a conventional
fingerprinting method. UCF estimates the target location
with RSS of BLE beacons without channel information.

• Separate Channel Fingerprinting (SCF) is a localization
method presented in [6, 7]. SCF estimates the target
location with RSS of BLE beacons separately measured
on three advertising channels.

• 2-Step Separate Channel Fingerprinting (2S-SCF) is the
localization method proposed in this paper.

Figure 6 shows empirical cumulative distribution functions
(ECDFs) of localization errors for UCF, SCF, and 2S-SCF. A
horizontal dotted red line indicates the probability of 95 %.
Intersections of the horizontal line and ECDF lines indicate
localization accuracies. Figure 6 indicates the following:

• 2S-SCF showed the lowest localization accuracy. Lo-
calization accuracies of UCF, SCF, and 2S-SCF were
6.76, 2.60, and 1.00 meters, respectively. Compared to
SCF, 2S-SCF improved localization accuracy by (2.60−
1.00)/2.60 × 100 = 61.5%. In 2S-SCF, fine-grained
localization gives up localizations when there is big
difference between database and target fingerprints to
improve localization accuracy performance.

• 2S-SCF showed the lowest maximum error. Maximum
localization errors of UCF, SCF, and 2S-SCF were 6.83,
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Fig. 7. Empirical cumulative distribution function (ECDF) of localization
errors in 2S-SCF coarse localization when fine-grained localization failed.A
localization error for more than 20 % of localization trials was greater than
6 meters, which was successfully excluded by 2S-SCF. However, small
localization errors less than 2 meters were also excluded, which resulted
in low localization success rate.

6.95, and and 2.05 meters. The decrease in maximum
error by 2S-SCF is natural because 2S-SCF only relies
on database fingerprints in the limited area determined
by R. Localization error must be less than or equal to
R. Small difference between the actual maximum error
and R was caused by calculation rounding errors.

The above results confirm that 2S-SCF greatly improved
localization accuracy with a small maximum localization
error.

2S-SCF improves localization accuracy by giving up lo-
calization when the target fingerprint is significantly different
from database fingerprints in the fine-grained localization step.
To validate that the performance improvement was mainly
made by a sacrifice of localization-success rate, we extracted
unsuccessful localization trials and evaluated localization er-
rors in a coarse localization step.

Figure 7 shows the ECDF of localization errors in 2S-SCF
coarse localization, which is actually UCF, when fine-grained
localization failed. Figure 7 reveals the following:

• Localization errors were greater than 6 meters for more
than 20 % of unsuccessful localization trials. 2S-SCF
successfully removed localization trials that degrade lo-
calization accuracy.

• Localization errors for approximately 80 % of unsuccess-
ful trials were less than 2 meters. We confirmed that
database fingerprints close to the actual target location
were successfully selected in these trials. Distance be-
tween database and target fingerprints defined in Eq. (4),
however, was infinity, which resulted in unsuccessful
localization.

From the above results, we confirm that 2S-SCF gave up
localization when target and database fingerprints were signif-
icantly different and improved localization performance. We
still have a room to improve a localization success rate as
we observed that coarse localization errors were less than 2
meters for approximately 80 % of unsuccessful localizations.

VI. CONCLUSION

In this paper, we presented BLE 2-step separate channel
fingerprinting (2S-SCF), which is a BLE-based fingerprinting
localization method improving localization accuracy with a
small maximum localization error. The key idea of 2S-SCF is
to combine fingerprinting with and without channel diversity
using RSS measured on three advertising channels separated
by up to 78 MHz. We first coarsely estimate the target location
using a conventional fingerprinting method and then perform
fine-grained localization using separate channel fingerprinting
(SCF). Experimental evaluations demonstrated that 2S-SCF
successfully reduced localization errors down to 1.00 meters
95 % of time with a maximum localization error of 2.05
meters. As for future work, we plan to extend 2S-SCF for
large-scale environments.
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