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Abstract—In this paper we present C-HAR, a low-cost,

low-complexity, compressive measurement-based human activ-

ity recognition framework for embedded devices, capable of

simultaneously filtering and acquiring the sensor readings of a

smartwatch’s accelerometer and gyroscope at sub-Nyquist rates.

A software simulation of the full system obtains an accuracy of

92.0% and 88.0% for the accelerometer-based and gyroscope-

based systems respectively, obtained at a 5 Hz sample rate. A

microcontroller implementation of the system’s back-end obtains

an accuracy of 90.3% and 87.1% for the accelerometer-based and

gyroscope-based systems respectively with a runtime over twice

as fast as that of a comparable baseline system.

Index Terms—human activity recognition, compressive sensing,

wearable sensors

I. INTRODUCTION

We are currently witnessing an explosion in the adoption of
smartwatches and their associated technologies. Market analy-
sis conducted by [1] shows that the global smartwatch market
volume is predicted to reach 230.3 million units by 2026,
with the adoption rate growing across all demographics. This
has led to a situation in which an ever-increasing number of
people carry sensors on their wrists (a part of human anatomy
with multiple axes of movement) for extended periods of
time, significantly increasing the viability and scope of human
activity recognition (HAR) systems.

Battery life and system autonomy are crucial factors in
many HAR systems, especially those found in safety-critical
applications where usage and adoption need to be as consis-
tent and as uninterrupted as possible, and smartwatch-based
HAR is no exception. We refer to this particular subcategory
of HAR which focuses on maximizing system efficiency
while presenting performance metrics comparable to regular,
non-lightweight, alternatives as “lightweight HAR”, where
lightweight means “low-cost, low-complexity”.

Lightweight HAR sees extensive use in medical applications
in particular for two key reasons. The first reason is that
low-cost, low-complexity systems can be worn for longer
periods of time without needing to be recharged, increasing
the device usage rate among the subjects. This is made clear
in [2] where the authors found that 27% of participants in a
medical trial stopped using their wearable sensing devices due
to difficulties ensuring they remained powered and operational.
The second reason is that more computationally complex

systems often transmit information from a sensor or sensors
worn by subjects to a local or cloud computing node for
processing and storage, which significantly increases the risk
of a subject’s personal information being intercepted and
misused by an ill-intentioned third party. This has a significant
impact on the adoption rate of wearable HAR device-based
healthcare, as highlighted in [3], where the authors found that
a significant set of users in a medical devices trial did not feel
comfortable letting their personal information be transmitted to
a remote location for processing. Lightweight systems capable
of performing processing and classification on-device can help
overcome both these limitations. Moreover, the possibility of
real-time on-device processing and classification offers signif-
icant advantages in a number of different HAR applications:
the absence of transmission overheads due to communicating
with the cloud would be particularly advantageous in safety-
critical [4] or nudge-based systems [5], for instance.

There is a considerable existing body of research focusing
on smartwatch-based HAR, but it is important to note that
not all smartwatch-based systems are intrinsically lightweight:
certain approaches either require the use of significant amounts
of data to operate (such as the system proposed in [6]
which obtains a large amount of sensor data and sends it via
Bluetooth Low Energy (BLE) to a smartphone for off-device
processing), or make use of larger-scale, more complex clas-
sifiers to identify the various activities (such as the approach
presented in [7] in which the authors perform classification us-
ing off-device large-scale artificial neural networks (ANNs)).
The cost, complexity, and off-device processing requirements
of these systems make them unsuited for use in safety- and
privacy-critical applications.

In this paper, we present a method to reduce the amount of
data required to classify a range of daily human activities using
smartwatches, while maintaining an accuracy comparable to
existing approaches. By doing so, we hope to lower the system
memory requirements by reducing the classifier model size,
input data storage requirements, and overall computational
costs associated with traditional HAR systems; the end goal
being to design a lightweight HAR framework capable of
operating on embedded devices in real-time, with the classifi-
cation procedure performed entirely on-device. Our proposed
approach further reduces overall system cost and complexity
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by simultaneously acquiring and filtering input signals, remov-
ing the need for an additional preprocessing stage.

We achieve this using a compressive sensing- (CS) inspired
method first presented in our previous work [8], in which
input signals are simultaneously filtered and sampled at sub-
Nyquist rates by using spectrally shaped bipolar demodulating
signals. We name the compressive measurement-based human
activity recognition approach proposed in this paper C-HAR
accordingly.

Furthermore, we implement the feature extraction and clas-
sification processes of the proposed system on a microcon-
troller (MCU). The small form factor and limited computa-
tional resources of a typical MCU make it a suitable stand-in
for a smartwatch, and deploying our proposed system on such
a platform will serve to prove its viability as a lightweight
smartwatch-focused HAR framework.

Our main contributions can be summarized as follows:
• We put forward an approach to simultaneously filter

and sample 3-axis sensor readings at sub-Nyquist rates
using Markov chain-generated spectrally shaped bipolar
sequence; we tailor the choice of bipolar sequences to
both the sensor, and the individual sensor axis. Our
proposed system’s sample rate is 4 times lower than
that of comparable typical systems using a “sample-then-
filter” approach.

• We use our proposed system to perform on-device multi-
class classification, obtaining accuracy similar to existing
binary classification systems. The on-device runtime of
our proposed system is over twice as fast as that of a
comparable baseline system.

• We present an MCU implementation of the system’s fea-
ture extraction and classification processes, demonstrat-
ing its viability as a smartwatch-compatible lightweight
sensing architecture.

The remainder of this paper is structured as follows: we
begin in Section II by examining the existing literature, in
Section III we describe the system design process, and how
we deal with the input data particular to our application, in
Section IV we evaluate our proposed system to gauge it’s
viability as a lightweight HAR framework, and discuss the
obtained results in Section V. In Section VI we cover the
process of implementing C-HAR on an MCU, and finally
conclude the paper and discuss potential directions for future
work in Section VII.

II. RELATED WORK

There is a range of existing research focusing on CS-based
lightweight wrist-worn HAR systems, which while ostensibly
similar to our proposed C-HAR approach vary significantly
in certain aspects. The authors of [9] leverage CS in a
healthcare monitoring application to reduce the minimum re-
quired transmission power between sensors placed on patients
and a central processing computer. While this system uses
CS to acquire input signals at sub-Nyquist rates, it differs
majorly from our proposed system as it recovers the original
signal from the compressive measurements before performing
classification.

In [10], the authors present a compressive measurement-
based stroke detection system which bypasses the CS recon-
struction process entirely, and performs classification using
the information contained in the measurements prior to re-
construction. While this approach is similar to the one put
forward in our work, there are two key differences between the
two. The first difference is the way in which the compressive-
measurements are processed: in our proposed method, the
input signal is filtered during the sampling process, rather than
being filtered post-sampling. The second difference is the num-
ber of class labels: our proposed method performs multiclass
classification, and the system outlined in [10] performs binary
anomaly detection classification.

The authors of [11] present a low-power compressive
sensing-inspired sub-Nyquist sensing device. The system em-
ploys non-uniform wavelet sampling (NUWS) to obtain a set
of features directly from an electrocardiogram (ECG) signal,
which are then used to detect cardiac arrhythmia. Again, this
approach is similar to our proposed C-HAR approach, however
this system does not process or filter the compressive mea-
surements before classification, and similarly to the approach
described previously in [10], only performs binary anomaly
detection classification.

More generally, there is a large body of existing research
focusing on MCU-based HAR. The authors of [12] present a
framework which makes use of traditional accelerometer and
gyroscope sensor information in conjunction with a wearable
stretch sensor placed on a subject’s leg to obtain data from
multiple sensing modalities. This information is presented to
an MCU-based deep neural network (DNN), whose perfor-
mance can be improved through user feedback. This feedback
however, is provided through a smartphone application which
also calculates and transmits the necessary weight and bias
changes of the DNN, and so it cannot be said that the full
system is entirely contained on an MCU. In contrast to the
systems outlined above which all use supervised learning
methods to perform classification, the authors of [13] propose
an unsupervised learning approach using a combination of
convolutional neural networks (CNNs) and self-organizing
maps for use in lightweight embedded device-based HAR
applications.

III. SYSTEM DESIGN

A. System Overview

An overview of our proposed C-HAR system is shown in
Figure 1 and is made up of three sections: Random Demodu-
lator, Spectral Shaper (split into 3 subshapers), and Feature
Extraction and Classification.

Three-dimensional input signals drawn from the sensor
readings of a smartwatch’s onboard accelerometer and gyro-
scope sensors are simultaneously filtered and sampled at a
sub-Nyquist rate in the Random Demodulator section using
a Markov chain-generated spectrally shaped bipolar pseudo-
random sequence prs created by the Spectral Shaper section.
Features are then extracted from the acquired samples and
used to detect and identify a range of daily human activities
in the Feature Extraction and Classification section. In this



paper we refer to the 3-dimensional input signal as s(t), with
each dimension corresponding to a different sensor axis, and
refer to the subsignals corresponding to each axis as x(t), y(t),
z(t).

In the following sections, we first give a brief overview
of the theory underpinning our C-HAR system, which is
based on the results of our previous work presented in [8],
before explaining the operation of the different C-HAR system
components in more detail.

Feature Extraction 
and Classification

ξy [m]ξx [m] ξz [m]

Random Demodulator

prsy(t)

prsz(t)

prsx(t)Markov 
Chain

Signal 
Generator
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Signal 
Generator

Subshaper 2

Markov 
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Signal 
Generator

Subshaper 3

Feature Extraction 
5 features per axis 
15x1 feature vector

Classifier

x(t)

y(t)

z(t)

Spectral Shaper

Fig. 1: C-HAR system overview: the x(t), y(t), z(t) sub-
signals of the input signal s(t) are combined with suitable
prsx (t), prsy(t), and prsz (t) signals, before being acquired
at sub-Nyquist rates. Features are extracted from the resulting
⇠x[m], ⇠y[m], ⇠z[m] measurements and used as inputs to a
classifier.

B. Compressive Measurement Processing
The most computationally intensive step in the entire CS

procedure is the reconstruction process. In our proposed C-
HAR system, we significantly reduce the computational re-
quirements by bypassing the reconstruction process and per-
forming classification based on information extracted directly
from a set of compressive measurements ⇠.

If we consider ⇠ as samples from which features can be
extracted, then it follows that appropriate preprocessing of
the compressive measurements can improve the performance
of any associated supervised learning approaches. Typically,
preprocessing is performed once the ⇠ measurements are
obtained and is ordinarily modeled as a sequence of matrix
operations on an input matrix or vector such as in [14]
or [15]. While this approach can lead to precise filtering and

processing, it often requires knowledge, and thus on-system
storage of ⇥, the reconstruction matrix used in the recovery
process, which places minimum requirements on the memory
and computational capabilities of the hardware on which the
processing occurs.

We propose a solution to this problem in our previous
work [8] where we present a simultaneous sub-Nyquist sam-
pling and filtering framework based on the random demodu-
lator (RD) architecture [16]. We showed that the frequency
spectrum of the pseudorandom bipolar spreading sequence
prs(t) has a direct effect on the frequency spectrum of
the reconstructed signal ŝ(t). Thus, with prior knowledge
of spectral locations of interest in the input signal, using
tailored bipolar sequences during the demodulation process
allowed us to attenuate and amplify frequency content at
these specific locations, improving subsequent classification
accuracy. The bipolar sequences were generated using either
single or combined dual Markov chains, whose frequency-
domain representations are determined by the chains’ lengths
(2- or 4- state) and transition probabilities p1 and p2. This
ensured that the resulting ⇥ matrix adhered to the strict
criteria restricted isometry properties (RIP) outlined in CS
theory [17], thereby allowing the ⇠[m] measurements to be
considered as a reduced-dimensionality representation of the
input signal. The simultaneous sub-Nyquist sampling and
filtering of smartwatch sensor signals presented in this paper
is performed using a modified version of this framework.

C. Random Demodulator

The Random Demodulator section acquires the 3-
dimensional input signals at sub-Nyquist sample rate R, and is
made up of a signal generator, a mixer, a low-pass filter (LPF),
and an analogue-to-digital-converter (ADC). The compressive
measurements obtained from each of the x(t), y(t), and
z(t) subsignals are referred to as ⇠x[m], ⇠y[m], and ⇠z[m]
respectively. In our proposed C-HAR system, the prs used
to demodulate the input signals are generated in the Spectral
Shaper section.

D. Spectral Shaper

The Spectral Shaper section consists of 3 subshapers, each
of which is made up of a signal generator and Markov
chain block. They are used to produce bipolar sequences
designed in such a way as to amplify or attenuate specific
frequency information in an input signal s(t), with each of the
3 subshapers producing a prs which modulates the respective
individual x(t), y(t), z(t) subsignals of s(t). As we will
see in Section IV-A, in our application we are faced with
18 different activities recorded using 2 different sensors over
3 axes, resulting in a total of 108 different signals. Given
that it is not possible to individually match each and every
x(t), y(t), z(t) with a suitable prsx (t), prsy(t), and prsz (t),
we create a set of four predefined “filter” sequences, whose
spectra match the frequency responses of commonly used filter
types, using the approach discussed in Section III-B: a low-
pass sequence, a band-pass sequence, a high-pass sequence,
and a broadband sequence referred to as prs lp, prsbp, prshp,



TABLE I: Filter prs Parameters

prs
Number of

p1 p2
Length of

Chains 1st Chain 2nd Chain
prslp Single 0.85 - 2 -
prsbp Dual 0.9 0.9 2 4
prshp Single 0.1 - 4 -
prsbb Single 0.5 - 2 -
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Fig. 2: Spectra of “filter sequence” prs signals.

and prsbb respectively. The optimal prs for each axis in our C-
HAR system is determined empirically prior to operating and
evaluating the system. The spectra of the “filter” sequences
are shown in Figure 2, and the parameters used to generate
them are shown in Table I.

E. Feature Extraction and Classification
The Feature Extraction and Classification section consists

of a feature extraction block and a classifier block. We extract
a set of 5 features from the ⇠x[m], ⇠y[m], ⇠z[m] measurements
of both sensors, for a total of 15:8
>>><

>>>:

• mean
• standard deviation
• median
• largest absolute value
• interquartile range

for

(
⇠x[m]
⇠y[m]
⇠z[m]

In the classifier block, these extracted features are used
as inputs to a multiclass classifier to identify the activities
performed by the subjects. We use a random forest (RF)
classifier, often employed in HAR applications due to its
suitability for multiclass classification, minimal preprocessing
requirements (no input data rescaling required), and good
outlier tolerance. The RF is implemented using the scikit-learn
library [18].

IV. EVALUATION

A. Input Data
The data used in our proposed system comes from the

WISDM dataset [19]. The dataset contains the 3-dimensional
sensor data of the accelerometers and gyroscopes, sampled at

a rate of 20 Hz, of smartphones and smartwatches worn and
carried by a set of 51 subjects, who each performed one of
18 different activities for a duration of 3 minutes. The 18
activities can be split into 3 categories: “Non Hand-Oriented”,
“Hand-Oriented (General)”, and “Hand-Oriented (Eating)”.

We perform a number of preprocessing steps before using
the dataset in our proposed system. The first step is to discard
all the data collected by smartphones, retaining only the data
collected by smartwatches. The second step is to remove the
data of any subjects who did not perform all 18 activities,
bringing the number of subjects down from 51 to 43. The
final step is to split the sensor data by subject and by activity
into non-overlapping windows of length tw. In addition to
the raw sensor data, the WISDM dataset includes a range of
precalculated features extracted from 10s windows of the raw
time-series data, thus for the sake of consistency and future
comparison of results, we set the time window for activities
in our system as tw = 10s.

This leaves us with a total of 9300 segments with an average
of 216 segments per subject for the accelerometer data, and a
total of 9192 segments with an average of 213 segments per
subject for the gyroscope data. Because the sampling rates
of the two sensors are not synchronized, we consider the
accelerometer and gyroscope readings separately, rather than
as a single, combined sensor reading. For illustrative purposes,
we show the average frequency-domain representation of a
single example activity from each of the 3 categories (namely,
“Walking”, “Typing”, and “Eating Pasta”) in Figure 3.

B. Iterative Multiclass Classification

Accurately classifying 18 different activities involves exten-
sive input signal preprocessing or the use of a consequentially
larger classifier, both of which require significantly more
computational power than what is found in current lightweight
approaches. Therefore, given that the activities present in our
dataset are split into 3 categories, we evaluate our C-HAR
system using iterative 3-class classification as this enables us
to effectively and fairly evaluate system performance under
the current computational constraints.

Thus, evaluation is performed by iteratively drawing one
activity from each of the 3 categories (“Non Hand-Oriented”,
“Hand-Oriented (General)”, and “Hand-Oriented (Eating)”) in
turn, performing multiclass classification on every possible
3-activity combination, for a total of 210 combinations and
averaging the final results. All other simulation parameters
are summarized in Table II. System performance is evaluated
using the accuracy metric.

C. Feature Extraction and Classification

We evaluate the classification performance of C-HAR using
leave-one-subject-out cross-validation: we set each one of the
43 feature sets (where each set corresponds to a different
test subject, and contains the 15 features presented in Sec-
tion III-E) as the testing set, and the combined 42 remaining
feature sets act as the training set. This process is performed
43 times in total, with each of the feature sets acting as the
testing set in turn.
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Fig. 3: Average frequency domain plots of the a) accelerometer and b) gyroscope sensor readings by axis for “Walking”,
“Typing”, and “Eating Pasta’ activities.

TABLE II: Simulated C-HAR System Parameters

Nyquist Rate W 20 Hz
ADC Rate R 5 Hz
Bit Depth B 12 bits

Signal Length (Time) Ts 10s
Signal Length (Samples) N 200

Number of Compressive Measurements M 50

prsx(t)
Accelerometer prslp

Gyroscope prslp

prsy(t)
Accelerometer prshp

Gyroscope prsbp

prsz(t)
Accelerometer prshp

Gyroscope prslp

We set the RF parameters n estimators = 1000 and
min samples leaf = 3, and leave the other parameters as
default. Both the training and testing sets are balanced using
random undersampling prior to classification, and the results
obtained from each of the 43 runs are averaged to obtain the
system accuracy. Finally, to account for any potential discrep-
ancies caused by inherent randomness in the classification
process, we perform the full classification process 10 times
and average the obtained results.

V. RESULTS AND DISCUSSION

Table III displays the final system classification accuracy,
obtained by averaging the accuracies of each of the individual
210 3-class groups, for both sensors. Also displayed are the
accuracies of other systems against which we can compare
C-HAR, which can be split into two categories:

TABLE III: C-HAR Compared to Baseline Approaches and
Existing Systems

System Accuracy Sample Rate Classification
C-HAR (Accelerometer) 92.0% 5 Hz 3-class

C-HAR (Gyroscope) 88.0% 5 Hz 3-class
Baseline (Accelerometer) 93.4% 20 Hz 3-class

Baseline (Gyroscope) 90.1% 20 Hz 3-class
[10] 91.0% 10 Hz Binary
[11] 98.9% 360 Hz Binary

• Baseline Approaches: The first category consists of
accelerometer- and gyroscope-based baseline approaches,
designed to mimic the operation of C-HAR using a
typical “sample-then-filter” methodology. The x(t), y(t),
z(t) subsignals of both sensors are acquired at the
Nyquist rate W = 20Hz before being filtered by a
separate filter whose frequency response matches that of
the corresponding prsx , prsy , and prsz bipolar sequences.
The filters used are 6th order Butterworth filters, and the
cutoff frequencies are set as 5 Hz for the high-pass and
low-pass filters, and as 2.5 Hz and 7.5 Hz for the band-
pass filter. We can see that for both sensors, C-HAR
obtains a comparable accuracy to the baseline systems,
for a back-end sample rate R = W

4 = 5Hz.
• Existing Systems: The second category consists of ex-

isting lightweight CS-based systems [10] and [11], both
of which are healthcare-focused ECG-based systems. We
can see that while the accuracies of the two systems
and C-HAR (in particular the accelerometer-based ver-
sion) are similar, C-HAR operates at a lower sample



rate, and performs 3-class classification, while the other
systems only perform binary classification. It is impor-
tant, however, to bear in mind the differences in the
applications these systems are deployed in, and thus the
signals obtained and identified: C-HAR looks to acquire
and classify relatively low-noise onboard sensor signals,
whilst the other two systems are looking to obtain and
identify significantly noisier ECG signals. It is reasonable
to assume that the relative noise levels of the signals,
along with other factors, have an effect on the accuracy
performance of the different systems.

VI. MICROCONTROLLER IMPLEMENTATION

A. General Approach
The first step in the MCU implementation of C-HAR is to

select a suitable device. We choose the Teensy 4.1 board1 for
our implementation as it has a good cost-to-memory ratio, and
a large amount of total available memory.

The compressive measurements ⇠[m] are generated in the
manner described in Section III, and are saved on an SD card
from which they are sequentially loaded into the MCU for
feature extraction. The previously trained classifiers used in
C-HAR are ported from their software implementations onto
the MCU using the emlearn library [20].

The system parameters used in this MCU implementation
are the same as used in Section IV, displayed in Table II.
Given the considerable lengths of the model training, model
porting, and ⇠[m] measurement loading process, in our ini-
tial evaluation of C-HAR’s MCU implementation we use a
reduced-sized dataset for the sake of time and practicality.
This reduced-size dataset consists of 14 of the original 43
subjects chosen at random, performing a single activity from
each of the 3 categories. We choose as 3-activity combination
the 3 activities shown in Figure 3 (“Walking”, “Typing”, and
“Eating Pasta”).

B. Feature Extraction and Classification
We load the ⇠[m] measurements for both sensors and for

each axis onto the MCU, and extract the same features as de-
scribed in Section III-E. We visually confirm that the features
extracted by the MCU are identical to the features extracted
in the software implementation of C-HAR by outputting them
to the Teensy IDE’s serial monitor.

The classifier used is a smaller ported version of the RF
classifier trained in the system’s software implementation.
We set the RF parameters as n estimators = 100 and
min samples leaf = 3 respectively, and leave the other
parameters as default. As in Section IV-C, evaluation is
performed using leave-one-subject-out cross-validation.

C. Results and Discussion
The MCU implementation of C-HAR obtains an accuracy

of 90.3% for the accelerometer-based system and 87.1% for
the gyroscope-based system. These results are similar to the
simulation accuracies of 92.0% for the accelerometer-based
system and 88.0% for the gyroscope-based system presented

1https://www.pjrc.com/store/teensy41.html

in Section V. Despite the reduction in model size from
n estimators = 1000 to n estimators = 100, the system’s
accuracy performance remains stable.

We quantify the improvements to computational efficiency
by comparing the runtimes of C-HAR’s feature extraction
and classification processes to those of a non-compressive
measurement-based baseline approach (as previously de-
scribed in Section V). The runtime results averaged across
both sensors are shown in Table IV. We can see that C-HAR
runs more than twice as fast as the baseline approach, illustrat-
ing the computational advantages presented by our proposed
method. We speculate that the difference in measured runtime
between the C-HAR and baseline classification processes is
due to a lack of timer resolution at such short time intervals,
and that a more precise timer would show the measured values
to be close to identical.

These results help prove the viability of C-HAR as a
lightweight, embedded-device compatible framework. It is
important to note, however, that the MCU implementation
of C-HAR was evaluated using a reduced-size version of the
dataset, and that system performance may vary if confronted
with the entire original dataset.

TABLE IV: C-HAR MCU Implementation Runtime Results

Process C-HAR Baseline
Feature Extraction 50.4 ms 118 ms

Classification 0.257ms 0.413ms
Total 50.7ms 119ms

VII. CONCLUSION

In this paper we presented C-HAR, a lightweight sub-
Nyquist compressive measurement-based human activity
recognition system, capable of classifying a range of daily
human activities using data obtained from the sensor read-
ings of a smartwatch’s onboard accelerometer and gyroscope.
When compared to traditional “sample-then-filter” baseline
approaches, C-HAR obtains a similar accuracy for a sampling
rate 4 times lower. When compared to existing CS-based
lightweight HAR systems, C-HAR obtains a similar accuracy
for a lower sample rate, and performs multiclass rather than
binary classification. The back-end feature extraction and
classification processes of C-HAR can be implemented on an
MCU, where they run over twice as fast as those of a com-
parable baseline system, and do not require communication
with an external device such as a smartphone or server to
process or classify data. We hope that the results presented
in this paper will help drive the adoption of smartwatch-based
and wearable sensors by both extending system autonomy and
alleviating privacy concerns. Future work involves fine-tuning
our bipolar sequence-based preprocessing and classification
approaches to increase the number of classes our system is
able to detect, increasing the number of different applications
it can be deployed in.
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