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Abstract Ride-sharing services have attracted attention as a new public
transportation service. Previous studies on ride-sharing services focused on
a vehicle allocation algorithm maximizing the number of accepted requests
while minimizing vehicle travel distance. To make ride-sharing services sus-
tainable, maximization of user satisfaction is important. Users have di↵erent
satisfaction aspects. We therefore propose a vehicle allocation algorithm that
can handle the individual user satisfaction preference. The key idea is to
switch the cost function used in the optimization of vehicle allocation based
on an individual user satisfaction preference. In this paper, we assume that
there are users whose satisfaction preference consists of quick arrival and
economy. We define convenience, economy, and balance cost functions based
on user satisfaction preferences of quick arrival and economy. Combining the
cost functions with the existing successive best insertion (SBI) vehicle al-
location algorithm, we allocate vehicles to requests while maximizing user
satisfaction. We show the improvement of user satisfaction compared to the
existing vehicle allocation algorithm by up to 11% in simulation experiments
a dataset of taxi trips on Manhattan Island in New York City.
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1 Introduction

Recent advances in information systems and wireless communication tech-
nologies have led to practical ride-sharing services. In ride-sharing service,
a ride-sharing system schedules the route of vehicles to allow users to share
a ride providing low-cost door-to-door transportation. Ride-sharing services
are one of the promising candidates for future transportation services [1].

To realize practical ride-sharing services, pioneering work studied the fea-
sibility of ride-sharing services and optimization of vehicle routing as well as
allocation [2, 3]. Noda et al. and Ma et al. showed the advantages of ride-
sharing services compared to public vehicle-transportation systems such as
buses and taxis.

Allocation optimization in dynamic situations where requests are sequen-
tially generated is di�cult because of a considerable amount of computation.
In ride-sharing services, vehicles are allocated by a heuristic algorithm due to
the di�culty in allocation optimization. The literature has reported the opti-
mization of ride-sharing services based on estimated demands/requests, e�-
cient vehicle routing as well as allocation, and various pricing strategies [4–9].
Sustainability is an important aspect to encourage users to continue to use a
ride-sharing service as a public transportation service. However, the sustain-
ability of ride-sharing services has not been well studied.

To realize sustainable ride-sharing services, maximization of user satisfac-
tion is an important aspect. This paper therefore proposes a vehicle allocation
algorithm considering the satisfaction of users. Our key idea is simple: we op-
timize vehicle allocation with the cost function considering user satisfaction
preference. User satisfaction depends on an individual user’s situation. We
assume that a ride-sharing sharing system asks users to explicitly declare
their requirements such as quick arrival and the lowest cost.

As a first step of the ride-sharing service considering user satisfaction, this
paper presents a vehicle allocation algorithm maximizing a user satisfaction
metric. The vehicle allocation algorithm is an extended version of the ex-
isting heuristic vehicle allocation algorithm named successive best insertion
(SBI) [2]. The SBI is a semi-optimal vehicle allocation algorithm operating in
realtime with limited computational resources. The optimization of the SBI
is based on a cost function. We define new cost functions considering user
satisfaction preference and use the SBI to allocate vehicles maximizing user
satisfaction. We switch cost functions based on user satisfaction preference
because individual users have di↵erent satisfaction preferences. In this pa-
per, we define cost functions based on the user requirements of quick arrival
and the lowest cost, which correspond to the user satisfaction preference of
convenience and economy, respectively.

To confirm the e↵ectiveness of our vehicle allocation algorithm, we con-
ducted simulation experiments with requests extracted from a dataset of taxi
trips on Manhattan Island in New York City. The experimental results reveal
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that our vehicle allocation algorithm successfully improved user satisfaction.
Specifically, our main contributions are twofold:

• We present the design of a vehicle allocation algorithm with the consid-
eration of user satisfaction preference. We use the existing SBI algorithm
with newly defined cost functions to allocate vehicles maximizing user sat-
isfaction.

• We show the improvement of user satisfaction compared to an existing
vehicle allocation algorithm by up to 11% in simulation experiments using
a dataset of taxi trips on Manhattan Island in New York City.

The remainder of the paper is organized as follows. Section 2 looks through
related work on ride-sharing systems. We present our vehicle allocation al-
gorithm in Sect. 3, followed by simulation evaluations in Sect. 4. Section 5
concludes the paper.

2 Related Work

Vehicle allocation in a ride-sharing services with sequentially generated re-
quests is one of the Dial-a-Ride Problems (DARPs) [10]. We assume a dy-
namic situation where requests are sequentially generated. References [11,12]
pointed out that optimization in dynamic situations is more di�cult than in
static situations where requests are reserved in advance. To solve a DARP
in real time, quasi-optimization is a practical approach. For this reason, al-
gorithms that optimize in about polynomial time are widely used in actual
ride-sharing services [13–15].

In the field of ride-sharing, pioneering work demonstrated the e↵ective-
ness of ride-sharing services compared to fixed-route buses while keeping the
travel distance low [2, 3]. Based on the pioneering work, ride-sharing opti-
mization is studied. Previous studies have investigated the optimization of
vehicle routing [4, 5], vehicle allocation [6], vehicle location [7], and rational
pricing [8, 9]. However, user satisfaction with ride-sharing services has not
been well studied.

User satisfaction in ride-sharing services has primarily been defined in
terms of arrival time [16, 17]. In these studies, the time di↵erence between
estimated and actual arrival due to the ride-sharing is considered to a↵ect
user satisfaction. User satisfaction, however, is di�cult to model only using
the arrival time. Ref. [18] reported that user satisfaction in ride-sharing ser-
vices is dependent not only on the arrival time, but also on many aspects
including convenience and safety. There is a study defining user satisfaction
based on both arrival time and fare [19]. Although these studies defined user
satisfaction, no optimization was performed to maximize user satisfaction.

Levinger et al. proposed a vehicle allocation algorithm based on user sat-
isfaction [20]. However, the proposed vehicle allocation algorithm assumes
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static requests from a single origin. In practical ride-sharing services, requests
are sequentially generated by users with various origins and destinations.
Beirigo et al. proposed the vehicle allocation algorithm that prioritizes and
responds to requests according to the usage style selected by users [21]. There
are three levels of usage styles: Business (1st), Standard (2nd), and Low-cost
(3rd). Business (1st), which has the highest priority, is served by occupied
vehicles and not shared rides, in exchange for a higher fee. Standard (2nd)
and Low-cost (3rd) services are available at a lower cost than the Business
(1st) services by sharing their rides. However, only three categories of usage
patterns are set, making it di�cult to respond to the various desires of users.

3 Vehicle Allocation Based on User Satisfaction

3.1 Use Case

In this paper, we assume the use case below.

1. A user requests a ride at any time to a ride-sharing management system.
The request consists of the origin point, destination point, arrival deadline,
and the number of passengers.

2. The ride-sharing management system allocates a vehicle to the request. A
request acceptance signal including estimated boarding and arrival time
is sent to the user. On allocation failure, a request rejection signal is sent
to the user. A typical allocation failure occurs when the estimated arrival
time exceeds the arrival deadline.

3. When the user receives an acceptance signal, the user boards the allocated
vehicle at the origin point specified by the user. Immediately after the
vehicle arrives at the destination point, the user gets o↵.

4. The allocated vehicle might carry another user on the way to the origin
and destination points specified by the user. Therefore, the actual boarding
and arrival time might be di↵erent from the estimated boarding and arrival
time. Note that the requested information never changes during a ride.

5. The ride-sharing management system calculates the fare for the ride based
on the ride time and an arrival delay from the estimated arrival time, which
is charged to the user.

6. Users send feedback after using the ride-sharing service. In the feedback,
the user explicitly selects from three options: “desire to spend cheaply”,
“desire to travel faster” or “satisfied with the service”.



Vehicle Allocation Algorithm Improving User Satisfaction in Ride-Sharing 5

Send a request

Allocation  
algorithm

Allocation Feedback
Convenience 
cost function

Balance 
cost function

Economy 
cost function

Feedback data

Fig. 1: Overview of vehicle allocation algorithm

3.2 Overview of Vehicle Allocation

Figure 1 illustrates the overview of our vehicle allocation algorithm. Our
key idea is to switch multiple cost functions based on an individual user
satisfaction preference in a vehicle allocation optimization process. In this
algorithm, we find the vehicle with minimum additional cost and allocate
the request. The additional cost of each vehicle is calculated using the cost
functions selected based on user satisfaction preference.

A user satisfaction preference is represented by a combination of conve-
nience weight WC and economy weight WE, where WC+WE = 1. We assume
that a user satisfaction preference dynamically changes. We therefore update
the weights for each user based on feedback after the service use. In this pa-
per, the ratio ofWC andWE is assumed to be unchanged from the pre-defined
ratio.

In this paper, we define three cost functions: convenience, economy, and
balance cost functions. In the vehicle allocation process, we calculate the cost
of vehicle allocation for each vehicle using the cost function depending on the
weights of a new request. When WC > WE, we use the convenience cost
function in the cost calculation. When WC < WE, the economy cost function
is used. The balance cost function is used when WC = WE. Note that we
always use the convenience cost function for vehicles with no request because
the economy and balance cost functions incur a huge delay when there is no
request other than a new request.

We do not limit the vehicle allocation optimization algorithm. In this pa-
per, we use the successive best insertion (SBI) algorithm [2].

The following subsections describe the basics of the SBI algorithm, followed
by the definition of the cost functions.
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Algorithm 1: Successive Best Insertion (SBI)
Data: List Z of vehicles, list L⇣ of origins Oi and destinations Dj

corresponding to requests assigned to vehicle ⇣, origin On and
destination Dn of new request, deadline of arrival time

Result: v ( vehicle with minimum cost, L ( new origin/destination list
including On and Dn

1 all cost [ ] = 1;
2 for ⇣ in Z do
3 all routes[ ] = empty list;
4 l = sizeof (L⇣);

5 for k in
�l+2

2

�
do

6 routes[k] = L⇣ with inserted On and Dn;

7 all cost r [ ] = 1;
8 for route in routes[ ] do
9 cost r [route] = cost func(route);

10 if time(Dn) > deadline then
11 cost r [route] = 1;

12 L
0
⇣ = argminroute cost r [route];

13 cost [⇣] = cost r [L0
⇣ ];

14 v = argmin⇣ cost [⇣];

15 L = L
0
v;

3.3 Successive Best Insertion (SBI) Algorithm

The SBI is a vehicle allocation algorithm for ride-sharing services [2], which
calculates semi-optimal vehicle allocation with limited computational re-
sources.

Algorithm 1 summarizes the process of the SBI algorithm. In Algo. 1,
cost func(route) is the cost function over the given route, time(D) is the
estimated time of arrival at destination D, and

�x
y

�
represents a binomial

coe�cient. The SBI is a two-step optimization process. In the first step, the
minimum cost caused by the new request is calculated for each vehicle. L⇣

is a list of origins/destinations of vehicle ⇣. We insert origin On and destina-
tion Dn of a new request to each position of L⇣ and create a list routes[ ] of
new route candidates on lines 5–6. The number of the new route candidates
is calculated by a binomial coe�cient

�l+2

l

�
, where l is the number of ori-

gins/destinations assigned to vehicle ⇣. We change index number k within a
range from 1 to

�l+2

l

�
to store each route candidate in routes[ ]. On lines 8–11,

a cost for each route candidate is calculated. The cost of vehicle ⇣ is then cal-
culated by finding the route candidate with a minimum cost on lines 12–13.
In the second step, find the vehicle with the minimum cost and allocate the
vehicle to the new request on lines 14–15.
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3.4 Cost Functions

We define convenience, economy, and balance cost functions based on each
of user’s satisfaction preferences of convenience and economy. In ride-sharing
services, a fare discount is applied when users allow shared rides, when shared
rides occur, and when delays occur. The economy in this study is represented
by reduced fares. We therefore define a new cost function to allocate vehicles
prioritizing non-economic users, which promotes shared rides to users with
preferences of economy. The convenience cost function CC is defined with
an estimated arrival time of a new request and arrival delay of the requests
assigned to a vehicle, which is incurred by the new request. Let R be a set of
requests assigned to a vehicle. Note that a new request is not included in R.
The convenience cost function CC is defined as:

CC = tEA � tEEA +
X

r2R

WC,r�(r), (1)

where tEA is the absolute time of estimated arrival. We insert the origin
and destination of the new request into each position of the vehicle’s ori-
gin/destination list and calculate tEA for each origin/destination set. tEEA

is the absolute time of estimated earliest arrival when a vehicle picks up a
user immediately after the user’s request and travels to the destination on
the shortest route. We calculate tEEA by adding the shortest travel time to
the time that the user requests a ride. �(r) is the delay incurred by the new
request to request r, which is one of the requests already assigned to the
vehicle. For each request r in R, we calculate the estimated arrival time for r
when we insert the new request and subtract the new arrival time from the
estimated arrival time without the new request, deriving �(r).

The term
P

r2R WC,r�(r) in formula (1) is the sum of delays weighted
by the convenience weight WC,r. The sum is calculated over all the requests
assigned to a vehicle. We can take user satisfaction preferences into account
for the requests already assigned to a vehicle. When the user satisfaction
preference ratio is WC : WE = 1.0 : 0.0, as an extreme example, the delay
time incurred by the request is 100% included in the cost. When the user
satisfaction preference ratio isWC : WE = 0.0 : 1.0, the delay time is excluded
from the cost calculation. In short, a greater economy weight WE incurs
arrival delays.

For economy-oriented users, we define an economy cost function. The econ-
omy cost function CE is defined as:

CE = tD � tEA +
X

r2R

WC,r�(r), (2)

where tD is the arrival deadline for the new request. The economy cost func-
tion aims to deliver users a ride as cheaply as possible arriving before the
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arrival deadline. We therefore designed the economy cost function to be small
when the time length of the shared ride is long.

For users who want a balanced response between convenience and economy,
we define a balance cost function. The balance cost function CB is defined
as:

CB =

����
1

2
(tD + tEEA)� tEA

����+
X

r2R

WC,r�(r). (3)

The balance cost function aims to balance arrival time and fare. By equalizing
the weights of convenience and economy,

P
r2R WCr�(r), i.e., the sum of the

delay on requests assigned to a vehicle, is likely to be minimized. Compared
to the convenience cost function CC , the impact of the term

P
r2R WCr�(r)

is small in CB . The balance cost function therefore minimizes the sum of the
delay while prioritizing the minimum delays for convenience-oriented users.

4 Evaluation

To confirm the e↵ectiveness of the proposed method, we conducted simula-
tion experiments. We first evaluated economy user satisfaction against the
user satisfaction preference weights. We also evaluated the impact of fare pa-
rameters on economy user satisfaction. User satisfaction with di↵erent weight
distributions was evaluated because the number of users with specific user
satisfaction preference weights a↵ects the mean user satisfaction.

4.1 Experiment Environment

We used the Simulation of Urban Mobility (SUMO) simulator. The SUMO
is an open-source road tra�c simulator, which is equipped with the Tra�c
Control Interface (TraCI) allowing us to integrate external programs to con-
trol vehicle behavior [22]. We implemented a vehicle allocation algorithm in
Python, which was integrated into the SUMO via the TraCI.

Figure 2 shows a road network used in the simulation. The road network
is a part of Manhattan Island and covers an area of approximately 20km2,
which was constructed using OpenStreetMap1. The numbers of nodes and
edges, i.e., roads and intersections, are 20454 and 11133, respectively.

Requests were generated based on the taxi trip open data2. We randomly
extracted requests from 09:00 am to 10:00 am on weekdays in May 2019.
The number of extracted requests was determined as the mean daily num-

1 https://www.openstreetmap.org/
2 https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page/
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Fig. 2: Road network

ber of requests from 09:00 am to 10:00 am on weekdays in May 2019. The
request data contains boarding and arriving time, boarding and arriving loca-
tions, and the number of passengers. The boarding and arriving locations are
recorded as an area ID3, which is uniquely given to each of the divided areas
in Manhattan. In our experiment, we randomly chose edges in the boarding
and arriving areas, respectively, as boarding and arriving edges.

Table 1 shows simulation parameters. A vehicle can carry up to 4 persons
in addition to a driver. The simulation started at time t = 0 and stopped at
t = 10000 seconds. Requests were generated between t = 400 and t = 4000
second.

Table 1: Simulation parameters

Parameter Value
# of requests 4456
# of person / request 1
# of vehicles 800, 1000, 1200
Seating capacity 4
Vehicle speed V [km/h] 30

To avoid impossible request generation, the arrival deadline tD for each
request was determined as:

3 https://data.cityofnewyork.us/Transportation/NYC-Taxi-Zones/d3c5-ddgc/



10 Yuta Wakazono, Shigemi Ishida, and Yoh Shiraishi

tD = tO +m
d

V
+ TP, (4)

where tO is the time when the request occurs, d is the distance between origin
and destination points of the request, m is a margin coe�cient, and TP is
a constant value corresponding to the mean time required for pick-up. The
margin coe�cient m is a simulation parameter for calculating the rational
deadline.

In this experiment, TP and m were set to 600 seconds and 1.5, respectively.
Each vehicle was put at a random point at t = 0 second. An empty vehicle
kept the current position until a new request was assigned.

To demonstrate relative performance, we compared the user satisfaction
of the following two methods.
(P) Proposed: The proposed method presented in Sect. 3. Cost functions
are switched based on the users’ preference.
(O) Original: The original SBI, which minimizes the number of request
rejections. The SBI uses the cost function CO defined as:

CO = tEA � tEEA +
X

r2R

�(r), (5)

which is designed to minimize the arrival delay caused by new requests.

4.2 User Satisfaction Metric

To validate the e↵ectiveness of our proposed vehicle allocation, we evaluated
user satisfaction using a user satisfaction metric. A user satisfaction prefer-
ence is dependent on users. We define a user satisfaction metric S as:

S = WCSC +WESE, (6)

where SC and SE are convenience user satisfaction and economy user satis-
faction metrics, respectively. The user satisfaction metric S takes a value be-
tween 0 and 1; a higher value indicates higher user satisfaction. As described
in Sect. 3.2, WC and WE are given by the user. SC and SE are defined as
follows.
Convenience user satisfaction metric SC : For convenience-oriented
users, we use the convenience user satisfaction metric SC defined as the ratio
of the actual remaining time to the estimated remaining time until the arrival
deadline:

SC =
tD � tA

tD � tEA

, (7)



Vehicle Allocation Algorithm Improving User Satisfaction in Ride-Sharing 11

where tA is the actual drop-o↵ time. SC takes a value between 0 and 1 be-
cause actual arrival is never before the estimated arrival and never after the
deadline.
Economy user satisfaction metric SE : For economy-oriented users, we
use the economy user satisfaction metric SE defined as the ratio of discounted
fare to the original fare:

SE = max

⇢
0, 1� FB + dFU � (tA � tO)FD

FB + dFU

�
, (8)

where FB is a fixed base fare, FU is the fare per unit distance, and FD is the
fare discount per unit time delay. We emphasize that FB , FU , and FD have
di↵erent dimensions: FB has the dimension of currency, while the dimensions
of FU and FD are currency per distance and currency per time, respectively.

SE takes a value between 0 and 1. Formula (8) is based on the evaluation
formula used in the Japanese ride-sharing service named Smart Access Ve-
hicle Service (SAVS) [13]. Formula (8) consists of terms corresponding to a
maximum fare and a rebate charge. The maximum fare is calculated from
the sum of FU and FB multiplied by d, where d is the distance between the
origin and destination of a request. The rebate charge is calculated by mul-
tiplying time required for arrival, which is calculated by subtracting tO from
tA, multiplied by FD. The later the arrival time tA becomes due to sharing
or tra�c congestion, the lower the fare becomes.

For example, if FD is increased relative to FU, a small delay can signifi-
cantly increase user satisfaction. However, if FD is excessively large compared
to FU, it becomes di�cult to make it profitable. In this formula, the value of
user satisfaction varies greatly depending on the value of FU and FD. In this
experiment, we set FB = 300 JPY, FU = 0.4 JPY/m, and FD = 0.4 JPY/s,
referring to Ref. [23].

4.3 User Satisfaction against the User Satisfaction

Preference Weights

Figure 3 shows the mean user satisfaction. The horizontal and vertical axes
indicate the number of vehicles and user satisfaction, respectively. We can
fairly compare user satisfaction because all requests were accepted by both
methods. Figure 3 shows that the proposed method has higher user satis-
faction than the original method for all cases of the number of vehicles. We
can confirm that the smaller the number of vehicles, the higher user satis-
faction with the proposed method. When the number of vehicles is 800, user
satisfaction is improved by 11% compared to the original method.

Figures 4 and 5 show the user satisfaction as a function of the user satis-
faction preference weight. Figures 4 and 5 indicate the following:
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Fig. 3: Mean user satisfaction
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Fig. 4: Mean convenience user satisfaction by weight. For each vehicle number
of 800, 1000, and 1200. (O) and (P) in the legend represent the original and
proposed methods.

• The proposed method tends to have a higher convenience user satisfac-
tion for users who placed more importance on convenience, and a lower
convenience user satisfaction for users who did not place importance on
convenience. In particular, there is a significant decrease in convenience
user satisfaction for users who do not value convenience for the parame-
ters with 800 and 1000 vehicles.

• The proposed method shows a drop in convenience user satisfaction only
when the number of vehicles is 1200 and the weight of convenience is 0.1.
Because there were su�cient vehicles in response to requests, the algorithm
incurred not so many shared rides.
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Fig. 5: Mean economy user satisfaction by weight. For each vehicle number
of 800, 1000, and 1200. (O) and (P) in the legend represent the original and
proposed methods.

Fig. 6: Economy user satisfaction for each parameter of the original method.
FU is the fare per unit distance, and FD is the fare discount per unit time
delay.

• Economy user satisfaction is higher for the proposed method when the
weight of the economy is 0.5 or higher.

• The proposed method has the highest economy user satisfaction when the
number of vehicles is 800. Because the supply of vehicles in response to
requests is lower than that of the other number of vehicles, the algorithm
incurred many shared rides, which resulted in lower fares.
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Fig. 7: Economy user satisfaction for each parameter of the proposed method.
FU is the fare per unit distance, and FD is the fare discount per unit delay
time.

4.4 Economy User Satisfaction against Di↵erent Fare

Parameters

Next, we conducted further analysis of the economy user satisfaction. In
Sect. 4.3, the economy user satisfaction was evaluated only with the pa-
rameters of FB = 300 JPY, FU = 0.4 JPY/m, and FD = 0.4 JPY/s. The
parameters FU and FD have a significant impact on the economy user satis-
faction. Therefore, we analyzed the change in the economy user satisfaction
when the parameters FU and FD were changed.

Figures 6 and 7 show the economy user satisfaction of the original and pro-
posed methods when FU and FD are changed from 0.1 to 1.0. The horizontal
and vertical axes indicate parameters FD and FU, respectively. Figures 6 and
7 indicate the following:

• Both methods show higher values of economy user satisfaction when FD

is large compared to FU. Economy user satisfaction is higher when FD is
large compared to FU. This is natural because a small delay significantly
reduces the fare.

• When FD is large compared to FU, the original method tends to have
higher economy user satisfaction, while the proposed method has higher
economy user satisfaction when FD is small compared to FU. However,
the configurations such that FD is large compared to FU are impractical
in terms of profitability because the fare discount is too large.
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4.5 User Satisfaction against Di↵erent Weight Distribution

To validate the e↵ectiveness of the proposed method, we conducted an ex-
periment with requests for the distribution of various user satisfaction prefer-
ences. In Sect. 4.3 experiment, the distribution of user satisfaction preference
weights is determined randomly. However, the actual distribution of user
satisfaction preference weights is likely to be diverse. The diversity of the
distribution may vary based on a variety of factors, including hours of op-
eration, the population of the service area, the distribution of users’ annual
income, and the distribution of user age groups.

In our experiment, we assumed six patterns of the distribution of user sat-
isfaction preference weights. Figure 8 shows the distribution of the weights
used in our experiment. The horizontal and vertical axes indicate the conve-
nience weights and the number of generated requests, respectively. The weight
distribution shown in Fig. 8(a) is the one used in the aforementioned exper-
iment. Other experimental conditions are the same as described in Sect. 4.1.
In this experiment, the parameter for the number of vehicles was set to 1000.

Figure 9 shows the mean user satisfaction for the six weight distribution
patterns. The horizontal and vertical axes indicate the distribution of requests
and user satisfaction, respectively. Figure 9 indicates the following:

• For all patterns of the user satisfaction preference weight distributions,
user satisfaction of the proposed method is higher than that of the original
method.

• User satisfaction is higher for distributions with more convenience-oriented
users. From the results in Sect. 4.4, user satisfaction tended to be higher for
convenience user satisfaction than for economy user satisfaction. It is natu-
ral that user satisfaction is higher for distributions with more convenience-
oriented users.

• The larger the number of economy-oriented users is, the greater the dif-
ference in user satisfaction between the original and proposed methods.

These results show that the proposed method can improve user satisfaction
in various situations.

5 Conclusion

In this paper, we proposed a ride-sharing service employing a vehicle alloca-
tion algorithm using three cost functions to improve user satisfaction. The
cost function used in the vehicle allocation is switched based on the individ-
ual user satisfaction preference. We conducted simulation experiments and
demonstrated the performance of the proposed switching vehicle allocation
algorithm improved user satisfaction by up to 11% while maintaining vehicle
allocation performance.
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(a) (b)

(c) (d)

(e) (f)

Fig. 8: Six patterns of the distribution of user satisfaction preference weights.
The weight distribution represents the distribution of users’ requests corre-
sponding to each weight.

In this paper, we assumed that user satisfaction preference is represented
by a combination of convenience and economy. However, user satisfaction can
also be considered from preferences other than convenience and economy. For
example, ride comfort and the outside view can be also considered to become
a factor of user satisfaction. In our future work, we plan to design a new cost
function to support other user satisfaction preferences.
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Acronyms

SBI Successive Best Insertion
DARP Dial-a-ride problem
SUMO Simulation of Urban Mobility
TraCI Tra�c Control Interface
SAVS Smart Access Vehicle Service
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Glossary

Ride-sharing service A ride-sharing system schedules the route of vehicles
to allow users to share a ride providing low-cost door-to-door transportation.

User satisfaction A satisfaction with the service received by users of ride-
sharing services.

User satisfaction preference A user satisfaction preference is represented
by a combination of convenience weight WC and economy weight WE, where
WC +WE = 1. The ratio of WC and WE is assumed to be unchanged from
the pre-defined ratio.

Dial-a-ride Problem The Dial-a-Ride Problem consists planning of vehicle
routes and schedules for multiple users who specify the origin and destination
points of the request.
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