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Abstract—Sensor localization is one of the big problems when
building large scale indoor sensor networks. We are developing
Zigloc, a sensor localization system using Wi-Fi (IEEE 802.11)
APs (access points) as references [1,2]. Zigl.oc measures RSS
(received signal strength) of Wi-Fi AP signals to localize ZigBee
(IEEE 802.15.4) sensor nodes. However, Zigloc exhibits low ac-
curacy because of inaccurate RSS measured on a single narrow-
band ZigBee channel. In this paper, we present a highly accurate
sensor localization system MultiZigloc, which is an extended
system of Zigloc. Our key idea is to employ RSS measured
in multiple ZigBee channels in fingerprinting localization. The
RSS in multiple channels is dependent on the measured location
because ZigBee uses narrow-band channels. Narrow-band ZigBee
communication is highly affected by frequency selective fading,
whose influence is dependent on channels and locations of both
Wi-Fi APs and a sensor. We utilize fingerprints that separately
handles RSS in multiple ZigBee channels to employ channel
specific features. We conducted initial evaluations using RSS
measured in a practical environment. The evaluations reveal that
MultiZigloc improved the localization accuracy by more than
10 points.

Index Terms—sensor network, localization, ZigBee, Wi-Fi,
multi-channel

I. INTRODUCTION

Wireless sensor network is gaining its importance due to
its low-cost and low-power features in the fields of IoT (In-
ternet of Things) and M2M (Machine-to-Machine). In sensor
networks, sensor location is important for recognizing sensing
area, target tracking, and a network routing. Sensor location
is usually derived by using GPS (Global Positioning System)
or manual measurements. We face a sensor localization prob-
lem when we build a large scale sensor network in indoor
environments where GPS is unavailable.

To address the sensor localization problem, previous studies
have reported sensor localization systems [3-5]. Although
these studies have successfully reduced deployment costs [6—
20] or improved accuracy [21-26], they require user coopera-
tion or anchor nodes whose location is manually measured.

We also have developed Zigloc, a sensor localization
system using Wi-Fi (IEEE802.11) APs (access points) as
references [1,2]. ZigBee (IEEE 802.15.4) sensor nodes detect
specific beacon signals from multiple Wi-Fi APs installed
in an indoor environment and measure RSS (received signal

strength) of the signals. Location of sensor nodes is then
estimated by using fingerprinting or multilateration methods.
However, ZiglLoc exhibits low accuracy because of inaccu-
rate RSS measured in a single narrow-band ZigBee channel.
ZigBee uses narrow-band channels compared to Wi-Fi, which
greatly affected by frequency selective fading. When we
measure RSS of signals from an identical Wi-Fi AP in different
channels, the channel responses are dependent on the channel.
We observe different RSS values in different ZigBee channels.

In this paper, we present a high accuracy sensor local-
ization system MultiZigLoc, which is an extended system of
ZigLoc. Our key idea is to employ RSS measured in multiple
ZigBee channels as location-specific features in fingerprinting
localization. The RSS in multiple channels is dependent on
the measured location because of frequency selective fading.
We build a fingerprint database that separately stores RSS in
multiple ZigBee channels to employ channel specific features.

We conducted RSS measurement experiments in our univer-

sity building and analyze data by leave-one-out 10-fold cross
validation as an initial evaluation of MultiZigLoc. As a result
of classifying the location of sensor nodes into 3 locations and
calculating the localization accuracy, MultiZigl.oc improved
the localization accuracy by more than 10 points from Zigloc.

Specifically, our main contributions are twofold:

e We present the design of MultiZigl.oc, high accuracy
indoor localization system. MultiZiglLoc employs Wi-
Fi AP RSS measured on multiple ZigBee channels in
fingerprinting localization to enhance location-specific
features improving localization accuracy.

« We conduct initial evaluations of MultiZigl.oc using an
actual sensor node and Wi-Fi APs. We experimentally
show that MultiZigloc improves localization accuracy.

The remainder of this paper is organized as follows. Sec-

tion II explains about Zigl.oc and points out a problem of
Zigloc. Section III presents the design of MultiZigl.oc and
Section IV conducts an initial evaluation. Section V shows
related work on indoor sensor localization. Finally, Section VI
concludes the paper.

II. ZicLoc

Figure 1 depicts an overview of a sensor localization sys-
tem Zigloc. Zigloc consists of sensor nodes, a localization
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Fig. 1. Overview of Zigloc

server, and multiple Wi-Fi APs installed in an environment.
Each Wi-Fi AP is transmitting periodic beacon signals. The
sensor nodes detect the beacon signals from multiple APs
and measure their RSS (received signal strength) in a single
ZigBee channel. The sensor nodes then send all the RSS data
to a localization server. The localization server estimates the
location of the sensor nodes from the RSS data by using a
localization method such as fingerprinting or multilateration.

When ZigBee sensor nodes measure RSS of signals from
a Wi-Fi AP, the RSS value is dependent on the measurement
channel. ZigBee uses 2-MHz channel, while Wi-Fi uses 22-
MHz channel. We observe different Wi-Fi AP RSS in each
ZigBee channel because narrow-band ZigBee channels tend to
be affected by frequency selective fading. The RSS difference
degrades localization accuracy.

III. MULTIZIGLOC

A. Key Idea

Our key idea is to employ RSS (received signal strength)
measured in multiple ZigBee channels in fingerprinting lo-
calization. ZigBee uses narrow-band channels, so the RSS
in multiple channels is dependent on the measured location,
as mentioned in Section II. Also, because of narrow-band
channels, four ZigBee channels overlap a single Wi-Fi channel
in the same frequency band. The channel response of four
ZigBee channels are different from each other because of
the difference of channel frequency. Then, we observe dif-
ferent RSS depending on the channels despite measuring an
identical Wi-Fi signal. The difference of RSS shows different
characteristics depending on location. MultiZigl.oc improves
localization accuracy by using RSS measured in multiple
ZigBee channels in fingerprinting localization.

B. Design Overview

Figure 2 depicts an overview of MultiZigl.oc. MultiZigLoc
consists of a multi-ch-RSS measurement and fingerprint local-
ization blocks. In a multi-ch-RSS measurement block, sensor
nodes measure RSS while switching ZigBee channels. Finger-
print localization block estimates sensor location by using a
fingerprinting localization method.

Following subsections present design details of the each
block.

Multi-ch-RSS Measurement Block
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Fig. 2. Overview of MultiZigLoc
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Fig. 3. Overview of AP signal detection in multi-ch-RSS measurement block

C. Multi-ch-RSS Measurement Block

In a multi-ch-RSS measurement block, sensor nodes detect
beacon signals sent from Wi-Fi APs based on periodicity
of beacon signals. Fig. 3 shows an overview of AP signal
detection. A sensor node periodically samples RSS in a ZigBee
channel (Fig. 3a). Note that a ZigBee module on a sensor node
has an RSS measurement function defined in the standard [27].
A sensor node is capable of Wi-Fi signal detection because
both Wi-Fi and ZigBee are using the same 2.4-GHz ISM band.

The sensor node changes its observation channel after the
specific number of samples are collected. Channel switch takes
some time to restart radio circuits. We embed channel switch
signals instead of RSS samples during the channel switch
period. Because ZigBee modules provide average RSS over
128 microseconds, which is defined in the standard, we set
an RSS sampling period to 128 microseconds not to miss Wi-
Fi signals while minimizing the sampling rate. The collected
RSS samples are converted into channel-usage samples: 0
for clear and 1 for busy (Fig. 3b). We use a threshold
of —77dBm for channel-usage determination, which follows
after the default threshold of a CC2420 IEEE 802.15.4 module
for clear channel assessment [28].

The channel-usage samples are grouped by measurement
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Fig. 4. Overview of fingerprint localization block

channels and are folded on the AP beacon period, resulting in
channel-usage matrices (Fig. 3c). To preserve beacon timing
information, a part of the each matrix might be missing, as
shown in Fig. 3. We calculate the sum for each column in
each channel-usage matrix (Fig. 3d). These sums are named
channel-usage sums.

We can detect AP signals in each ZigBee channel by finding
a column whose channel-usage sum is above a threshold.
AP beacon signals whose interval matches to the folding
period appear in a specific column. Large channel-usage sum
therefore indicates that there are beacon signals whose interval
matches to the folding period. AP signals from an identical AP
have an identical beacon index. We configure APs with beacon
intervals that are non-multiples each other to separately detect
the APs [29].

AP-RSS is calculated by averaging RSS samples of the
detected AP signal. RSS samples corresponding to the AP
signal columns in a channel-usage matrix are extracted and
averaged. Note that we employ a simple edge filter to reduce
the RSS measurement error [30].

D. Fingerprint Localization Block

Figure 4 shows an overview of a fingerprinting localization
block. Fingerprint localization block consists of training and
localization phases.

In a training phase, fingerprinting localization block collects
fingerprints at multiple locations in a localization target area
and constructs a fingerprint database. Fingerprints made from
RSS of multiple Wi-Fi APs are features representing the
location. We name the set of fingerprints stored in the database
as database-fingerprints. Let ¢ denote the location where a
sensor node measures RSS, n denote the number of Wi-Fi
APs, and c denote a ZigBee channel. The database-fingerprint
R; at a location 7 is defined as

~'7Ti,n,c}7 (1)

where 7; ;. (j = 1,2,...,n) is an average RSS of AP,
measured in a channel c at a location .

In a localization phase, fingerprinting localization block
estimates sensor location based on distance between finger-
prints. A target sensor node measures RSS of Wi-Fi APs and

R; = {Tz‘,1,1, Ti,1,2y -+ -5 74,215 -

X

Fig. 5. Sensor node, Wi-Fi AP, and data processing laptop used in imple-
mentation

calculates a target-fingerprint. A target-fingerprint ¢ is defined
as

t={ti1,t12,.. vtnet )

in the same manner as in Eq. 1. Distance between the target-
fingerprint ¢ and the each database-fingerprint R; is calculated
as follows:

.,tg}l,...

d’LSt(R“f) = (Rz - %)2

= Z(Ti,n,c - tn,c)z' (3)

Finally, fingerprinting localization block estimates sensor
location. Fingerprinting localization block selects a target
sensor location ¢ that have the nearest database-fingerprint to
the target-fingerprint, as following formula.

i = arg min dist(R;, t). 4)

IV. INITIAL EVALUATION OF MULTIZIGLOC

In order to evaluate the effectiveness of MultiZigloc, we
implemented MultiZigloc system and conducted the evalua-
tion experiment of the localization accuracy.

A. Initial Implementation

Figure 5 shows equipments used in our implementation. We
used WNDR4300 Wi-Fi APs from Netgear running OpenWrt
and a MICAz sensor node from Crossbow that employs a
CC2420 IEEE 802.15.4 module [28]. A data processing laptop
was MacBook Air running Mac OSX 10.11.4. The sensor node
connected with the laptop. We implemented a localization
system as a Python program running on the data processing
laptop.

The sensor node periodically retrieved RSS samples and
send the RSS samples to the data processing laptop. The
data processing laptop applied the technique described in
Section III-C and obtained RSS on each ZigBee channel.

B. Experiment Setup

Figure 6 shows an experiment setup. We installed a Wi-
Fi AP in our laboratory. We measured RSS (received signal
strength) of the Wi-Fi AP signals in four ZigBee channels
using a sensor node at three locations a, b, and c, as shown
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in Fig. 6. The locations a, b, and ¢ are 11.3, 6.6, 6.6 meters
away from the Wi-Fi AP, respectively. The beacon interval
of our AP was set to 109 TU to safely distinguish our AP
from other APs whose beacon interval is 100 TU. We used
channel 11, where small number of Wi-Fi APs were operating
in our experiment environment. The sensor node periodically
switched its ZigBee channel from 21 to 24, which overlap
with Wi-Fi channel 11. The RSS samples were collected for
four seconds in each ZigBee channel. We repeated the RSS
sampling for 1500 trials. Trials with successful AP detection
on all the four ZigBee channels were used in our evaluation.

We evaluated localization accuracy by leave-one-out 10-
fold cross validation. In 10-fold cross validation, RSS samples
are divided into ten chunks, nine of the chunks were used
for learning in the training phase and the remaining one
chunk was used for localization in the localization phase. We
estimated the location of the sensor node from the 3 locations
a, b, and c in Fig. 6. The estimation was performed on all
combinations of test data. The total number of estimation
trials is 3 x 10% = 3000 times. The estimation result was
compared with the location where the test data was actually
measured, and the correct answer rate was evaluated as the
localization accuracy. Distance between a target-fingerprint
and database-fingerprints in each trial was also evaluated to
show the effectiveness of MultiZigloc.

To demonstrate relative performance of MultiZigl.oc, we
compared the localization accuracy of MultiZigloc and
Zigloc. MultiZigloc uses RSS measured in four ZigBee
channels as features, as shown in Section III. Zigl.oc method
uses RSS measured in a single ZigBee channel as a feature.

C. Localization Accuracy

Table I shows the localization accuracies of MultiZigloc
and ZigLoc. Table I indicates that MultiZigl.oc improved the
accuracy by more than 10 points.

All false answers in Zigl.oc were caused by RSS fluc-
tuations of test data at location a. The false answers in
MultiZigloc were caused at location b, which were estimated
as location c. These false estimation occurred for test data
taken from the head of collected RSS data, which were
highly affected by environmental changes mainly due to an

TABLE 1
LOCALIZATION ACCURACY OF MULTIZIGLOC AND ZIGLOC

MultiZigloc  Zigloc

True 2940 2600
False 60 400
Accuracy 98.0% 86.7%
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Fig. 7. Fingerprints of MultiZigl.oc

experiment operator. RSS measurement was conducted mainly
at night to minimize the influence of environmental changes.
However, at the head of measurement, some people who
affected the radio propagation environment were in the exper-
iment environment, which resulted in RSS fluctuations. When
we retrieve test data from the head of measurement, database-
fingerprints were built from RSS samples in an almost stable
environment, resulting in the high false answer rate.

To demonstrate that MultiZigl.oc approach, i.e., utilizing
RSS in multiple channels in fingerprinting, is effective for
accuracy improvement, we analyze distance between finger-
prints. Fingerprints are 4-dimensional vector in MultiZigloc,
which is difficult to show in a plot. We therefore compress
fingerprints into 3-dimensional vector by PCA (principal com-
ponent analysis).

Figure 7 shows the converted 3-dimensional finger-
prints. Circles and squares in the figure represent database-
fingerprints (database) and target-fingerprints (target), re-
spectively, and their color represents the measurement lo-
cation. Figure 7 shows that the distance between target-
fingerprints and database-fingerprints was shorter than the
distance between database-fingerprints at different locations.
The database-fingerprints at different locations had bigger
separation compared to database-fingerprints at the same lo-
cation. The target-fingerprints distributed near the database-
fingerprints at the same location, which resulted in high
estimation accuracy.

The target-fingerprints in a red ellipse in Fig. 7 caused false
answers of estimation. These target-fingerprints at location b
are distant from the database-fingerprints at the same location



TABLE 11
FINGERPRINT DISTANCE RATIO

(a) MultiZigLoc

Location j
a b c
a 1 0.312 0.212
Locationi b 0.266 1 0.304
c 0.164 0.277 1
(b) ZigLoc
Location j
a b c
a 1 0.789 0.290
Locationi b 0.328 1 0.167
c 0.057 0.087 1

b and are more close to database-fingerprints at the different
location c.

D. Fingerprint Distance Ratio

To accurately estimate sensor location, target-fingerprints
should be located close to database-fingerprints at the same
location compared to database-fingerprints at the different
locations. In other words, the distance ratio of the fingerprints
at the same location to the fingerprints at the different location
should be small.

In MultiZigLoc, distance between fingerprints at the same
location is smaller than distance between fingerprints at differ-
ent locations, which improves location estimation accuracy. To
confirm that fingerprints at different locations are distant, we
evaluated a fingerprint distance ratio. The fingerprint distance
ratio 7; ; between locations ¢ and j is defined by mean
distances between fingerprints as:

ﬁ ZfETl dlst(RZ y f)
Y, dist(B;, 1)’

where T; is a set of target-fingerprints at location ¢ for all
estimation trials.

Table II shows the fingerprint distance ratio 7; ;. Most
of the n;; in Zigloc is greater than that in MultiZigLoc,
which caused false answers in location estimation in ZigLoc.
Zigloc includes an outlier, i.e., a remarkably high fingerprint
distance ratio 7, while MultiZigLoc includes no outlier. The
fingerprint distance ratios in MultiZigl.oc were small enough
to accurately estimate sensor locations, which improved over
all estimation performance.

Ni,j = (5

V. RELATED WORK

To the best of our knowledge, fingerprinting localization
measuring RSS of Wi-Fi wide-band signal in multiple ZigBee
channels is novel in the field of indoor localization. In this
section, we look through related work on the indoor sensor
localization, and the improvement of localization accuracy
using frequency difference.

A. Indoor Localization Method

Indoor localization methods using wireless communication
are roughly divided into two methods: range-based and range-
free methods.

Range-based localization methods perform localization by
estimating the distance between a target sensor node and
reference nodes. The target sensor node measures RSS of
wireless signals of reference nodes to estimate distance from
the references. Then, the location of the target is estimated by
multilateration using the distance from multiple references.

In the field of range-based localization, previous studies
have primarily investigated reduction in deployment costs.
Iterative Multilateration [6] is a method that uses a local-
ized target node as a new reference. Because the number
of references increases as node localization proceeds, the
number of references initially deployed can be reduced. A
method of reducing the number of references by optimizing
the arrangement of references has also been reported [7].
MultiZigLoc can reduce the number of manually deployed
references by adopting these methods.

Range-free localization does not depend on physical infor-
mation such as the distance from a localization reference.
Range-free localization has been studied in the fields of
wireless sensor networks and ad hoc networks with limited
computing resources. Centroid [14], DV-Hop [15, 16], Amor-
phous [25], APIT [17, 18] are localization methods based on
the network connectivity. These methods have low calculation
load but it is difficult to realize high accuracy.

Fingerprinting localization, which is a kind of range-free
localization, is a widely used indoor localization method
because it can realize high accuracy [26]. Fingerprinting
localization consists of learning and localization phases. In
a learning phase, fingerprinting method collects fingerprints
at everywhere in a target area. Fingerprint, which is a vector
of RSS of signals from multiple references, is dependent on
measurement location. In a localization phase, target sensor
nodes measure the RSS, and estimate the location by searching
for the most similar fingerprint from the fingerprints collected
in the learning phase. MultiZigl.oc shown in this paper is a
method that improves sensor localization accuracy of finger-
printing.

In order to perform fingerprinting localization with high
accuracy, it is essential to collect huge amount of fingerprints.
For this reason, there is much literature working on deploy-
ment cost reduction. For example, ZiFind utilizes Wi-Fi AP
signals for sensor localization [19]. ZiFind localizes sensor
nodes using transmission timing of Wi-Fi beacon signals
as location-specific features. ZiFind, however, requires Wi-Fi
devices called ZiFind mappers installed at known locations to
collect fingerprints.

ZIL [20] performs fingerprinting localization using Wi-Fi
signal RSS and transmission timing of Wi-Fi beacon signals.
We also proposed Zigloc [1,2], a sensor localization system
using Wi-Fi APs as references. MultiZigl.oc shown in this
paper can be combined with these methods. We believe that
there is a room for accuracy improvement by taking advantage
of these methods.

B. Accuracy Improvement Using Frequency Difference

There are studies improving localization accuracy by us-
ing frequency difference of multiple channels. These studies



utilize Wi-Fi OFDM (orthogonal frequency division multiplex-
ing) modulation. CSI fingerprinting [31] extracts radio wave
propagation characteristics from each Wi-Fi subcarrier and
performs fingerprinting localization. Also, there are studies
that generate virtual wide-band signals by connecting multiple
Wi-Fi channels to perform localization based on time of
arrival [32, 33]. These methods, however, depend on the Wi-Fi
OFDM modulation. We cannot use them in sensor localization.

There is a ranging method combining multiple ZigBee chan-
nels [34]. This method improves accuracy by using the aver-
aged RSS measured in multiple ZigBee channels. MultiZigLoc
improves accuracy by applying this method, without averaging
RSS measured in multiple channels.

VI. CONCLUSION

In this paper, we present a sensor localization system
MultiZigLoc, which is an extended system of Zigloc to
improve localization accuracy. Because ZigBee channel is
narrow and highly influenced by frequency selective fading,
MultiZigLoc performs fingerprinting localization using RSS
measured in multiple ZigBee channels as location-specific
features. We conducted initial evaluations using RSS measured
in a practical environment. The evaluations demonstrated that
MultiZigLoc improved localization accuracy by more than 10
points compared to that of ZigLoc.
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