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Abstract. Searching for the smartphone lost in a house is a time-
consuming task because we usually rely on a ringing sound as a target sig-
nal. To support the smartphone search lost in a house, we are developing
a smartphone search assistant system that estimates the smartphone’s
surrounding conditions based on acoustic sensing with a smart speaker.
In this paper, we focus on smartphone contact-object estimation. Several
studies have reported smartphone contact-object estimation using su-
pervised machine learning (ML). However, the ML-based contact-object
estimation fails when a smartphone is on an unknown object. There are
too many objects in a house, which makes it impractical to train the
object estimation model with all the objects in a house. Therefore, we
propose a smartphone contact-object estimator that considers the ab-
straction level of estimation results to support unknown objects. Our
estimator is based on two key ideas: (1) We prepare for estimator neural
networks for multiple abstraction levels and switch the neural network
model to a higher abstraction level when the estimation is unconfident.
(2) We train the neural networks using information derived from the
neural network corresponding to other abstraction levels. Experimental
evaluation revealed that our proposed contact-object estimator success-
fully estimated a contact object with an accuracy of 0.991.

Keywords: Acoustic sensing · untrained object estimation · hierarchical
neural network

1 Introduction

Many smartphone users often lose their smartphones in their houses [1]. We
usually search for a lost smartphone relying on a ringing sound as a target signal
by making a call to the lost smartphone from another device, which is ine�cient
due to the dependence on the human senses. When the lost smartphone is covered
by something or is under something, a smartphone search might be more di�cult.
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User Smart speaker Smartphone

1. ”Where is my phone?”

6. “That is in the bed in bedroom”

2. Make a phone ring

3. Ring the sound and vibration 

4. Record the echo of them
5. Estimate the smartphone's surrounding condition

Fig. 1: Overview of smartphone search assistance system

We are developing a smartphone search assistance system that employs acous-
tic sensing to estimate the smartphone’s surrounding conditions using a smart
speaker [2]. Figure 1 shows an overview of the smartphone search assistance
system using a smart speaker. We define the smartphone’s surrounding condi-
tions as the room where the smartphone exists, the contact-object, and the cover
state. Users can feel easier to find the lost smartphone with the smartphone’s
surrounding condition information.

In our previous work, we presented a smartphone cover-state classification
method, which estimates one of the smartphone’s surrounding conditions [2]. In
this paper, we present a smartphone contact-object estimator, i.e., the second
one of the smartphone’s surrounding conditions.

Several studies have reported smartphone contact-object estimators using a
supervised machine learning (ML) model. However, these estimators need to
learn almost all objects in a house for smartphone search because they cannot
handle untrained objects. Untrained objects are always mistakenly estimated as
one of the trained objects. Estimation mistakes confuse a user to find a lost
smartphone.

In contrast, we present a smartphone contact-object estimator that considers
the abstraction level of estimation results to support unknown objects. Even if
the object estimation fails, more abstract descriptions such as the smartphone
is on clothing can be a hint to search for the lost smartphone. Our estimator
switches the estimation model to one of a higher abstraction level to provide a
hint for the search on estimation failures. The estimation failures are detected
based on the confidence of an estimation result derived from the ML model.

Specifically, our contact-object estimator employs two approaches to improve
the estimation and generalization performance: (1) We prepare for multiple neu-
ral network estimation models corresponding to abstraction levels and switch
the model based on the estimation confidence. (2) We build a hierarchical neural
network to share information among estimation models of di↵erent abstraction
levels during model training. In this paper, we define three abstraction levels:
object, material, and soft-hard levels.

To verify the e↵ectiveness of our estimator, we evaluated the estimation and
generalization performance of the above two approaches using data collected in a
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practical environment. The results show that our estimator e↵ectively estimated
contact objects with an estimation accuracy of 0.991 for 21 objects.

The rest of this paper is organized as follows. Section 2 describes related work
of contact-object estimation and neural networks with a hierarchical structure.
Section 3 describes our smartphone contact-object estimator that considers the
abstraction level, followed by evaluation experiments in Sect. 4. Finally, Sect. 5
concludes this paper.

2 Related Work

2.1 Smartphone Contact-Object Estimation

To the best of our knowledge, this is the first attempt to estimate smartphone
contact objects using a smart speaker. There have been smartphone contact-
object estimators using smartphone built-in sensors such as a microphone [3–5],
an accelerometer [6], a camera [7], and a combination of multiple sensors [8].

The microphone-based approach estimates a contact object using variation
sound based on the acoustic characteristics of the contact object. Hwang et al. [3]
estimated 12 contact objects such as a clothing pocket, desk, and chair with an
accuracy of 0.910 based on the vibration sound di↵erence of the contact objects.
Ali et al. [5] also estimated 24 contact objects that usually exist both in a work
o�ce and home with an accuracy of 0.865 with the considerations of the e↵ect
of background noise. Hasegawa et al. [4] estimated 18 contact objects such as
a clothing pocket, a wooden desk, and a smartphone stand with an accuracy
of 0.821 based on the high-frequency components of the echo of a phone’s beep
sound.

The accelerometer-based approach estimates a contact object using the smart-
phone vibration characteristics a↵ected by contact objects. Cho et al. [6] esti-
mated six contact objects such as a sofa, bag, and hand with an accuracy of 0.850
based on the movement of a smartphone, which moves largely on the smoother
surface of contact objects.

The multiple sensor-based approach estimates a contact object using smart-
phone built-in sensors such as a microphone, accelerometer, and magnetic sensor.
Darbar et al. [8] estimated 13 contact objects with an accuracy of 0.917 using a
rule-based hierarchical inference model based on microphone, magnetic sensor,
and proximity sensor.

Although these studies have successfully estimated contact objects, no con-
siderations on untrained objects have been taken. In a practical environment,
there are many candidates for a contact object. Training with all the candidates
is impractical.

2.2 Hierarchical Neural Networks

Hierarchical neural networks have been reported mainly for image classification
tasks to improve performance [9–15].
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Wang et al. [9] proposed scene classification using two abstraction levels, i.e.,
instances and parts. Instances represent all objects except the background, while
parts represent components within instances. For example, an image containing
multiple people is subdivided into instances of each person, which has parts
such as a head, arms, and chest, for scene classification. Image classification is
performed using based on both instances and parts.

Novack et al. [10] aimed to improve classification accuracy for unknown im-
ages by leveraging existing label hierarchy information and an implicit semantic
hierarchy based on zero-shot image classification utilizing GPT-3. The implicit
semantic hierarchy assumes a hierarchical structure exists between classes, even
if the hierarchical structure is not explicitly defined in the dataset.

These studies demonstrated that hierarchical neural networks trained with la-
bels of hierarchical structure improved classification performance. In this paper,
we represent objects at di↵erent abstraction levels and utilize a hierarchically
structured neural network. We train the hierarchical neural networks considering
the hierarchical object representation.

3 Smartphone Contact-Object Estimator Considering

Abstraction Level

3.1 Approach

The primary idea of our method is to take abstraction levels of objects into
contact-object estimation. Estimation mistakes confuse a user to find a lost
smartphone. Our method outputs information with a higher abstraction level
when estimation confidence is low. As shown in Fig. 2, we can describe an ob-
ject at di↵erent abstraction levels. For example, a button-down is clothing and
a soft object. Our estimator outputs clothing when the estimation result of a
button-down is derived with low confidence.

Bedquilt BlanketButton-down Jeans Wooden
shelf

Wooden
desk

Laptop Metal deskObject

Material

Soft-hard

Clothing Bedding Wooding Metal

Soft Hard

Abstraction
level

High

Low

Fig. 2: Example of hierarchical representations of objects
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In this paper, we define three abstraction levels: object, material, and soft-
hard levels. We employ the following two approaches.

1. Estimation output with high confidence:
We prepare for estimation models corresponding to abstraction levels. Our
contact-object estimator calculates estimation confidence and marks estima-
tion results invalid when estimation confidence is lower than a threshold.
The final estimation output is the valid estimation result from the lowest
abstraction level.
In this paper, the lowest abstraction level is the object level, followed by
material and soft-hard levels. When the estimation confidence at the object
level is above the confidence threshold, for example, the estimation result at
the object level is used as the final output. When the estimation confidence
at the object and material levels are lower and higher than the threshold,
respectively, the estimation result at the material level is the final output.
The confidence threshold for each abstraction level is set on the training of
the estimation model.

2. Information sharing between di↵erent abstraction levels on estimation model
training:
We use neural networks as an estimation model for each abstraction level. In
the estimation model training, we transfer a part of the neural network model
to another estimation model corresponding to di↵erent abstraction levels.
In this way, we can include the feature extraction layers of the estimation
models at di↵erent abstraction levels as part of the neural network, improving
estimation accuracy. This approach is based on an intuition that we can
estimate a button-down easier when we know the object is clothing.

3.2 Design overview

Figure 3 shows an overview of our smartphone contact-object estimator consid-
ering abstraction level. Our contact-object estimator consists of three blocks: a
data collector, feature extractor, and hierarchical estimator. The data collector
collects sound signals caused by smartphone vibration using a smart speaker
built-in microphone. The feature extractor converts the sound signals into a
mel-spectrogram, which is used as a feature vector for contact-object estimation
as a classification task in the contact-object estimator. The hierarchical estima-
tor consists of three estimation neural network models corresponding to three
abstraction levels. The estimation result is taken from the results of the three
models based on estimation confidence described as Ci in Fig. 3.

The neural network models in the hierarchical estimator share some layers.
During the model training, we transfer these layers to share information trained
for contact-object estimation at each abstraction level.

The following subsections describe the details of each block.

3.3 Data Collector

The data collector collects sound signals caused by smartphone vibration using
a microphone embedded in a smart speaker.
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Vibration Sound Recorded Sound Data

Trimming
FFT
Mel Filter Bank
Log transformation

Mel spectrogram

object material soft-hard

Feature Extractor Hierarchical Estimator
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Speaker
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!"

Hard
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Share
Layer 

Share
Layer

!!	: Confidence at level #
$!	: Threshold at level #

% : object 
&	：material
' : soft-hard

Fig. 3: Overview of smartphone contact-object estimator considering abstraction
level

Sound signals used for the estimation model training are to be collected
in daily life before a smartphone is lost. We assume that a smart speaker is
connected to the smartphone, where we install a data collection application.
The smart speaker collects vibration sound on everyday notifications. The smart
speaker records vibration sound for 3 seconds immediately after the start of
vibration, which is the same procedure presented in [5]. The data collection
application then asks a user about the smartphone contact object to collect
training label.

Sound signals used for the contact-object estimation are collected when a
user asks the smart speaker to find a smartphone. The smart speaker sends a
command to the smartphone to vibrate and collects the vibration sound.

3.4 Feature Extractor

The feature extractor calculates a mel-spectrogram from the recording data
passed from the data collector.

First, we extract vibration sound data from the recording data. Because the
starts of the recording and vibration are not precisely synchronized, the feature
extractor trims o↵ the first part of the recording data. The feature extractor
extracts sound data between 100 and 1600 milliseconds from recording data,
obtaining 1500-millisecond vibration sound data. The vibration length depends
on the smartphone and might be less than 1500 milliseconds. If the vibration
length is less than 1500 milliseconds, the feature extractor trims o↵ non-vibration
sound sections and repeats the vibration sound, obtaining the 1500-millisecond
sound data.

Next, the feature extractor applies fast Fourier transform (FFT), mel filter
bank, and logarithmic transformation to the vibration sound data to derive a
mel-spectrogram in a logarithmic scale. Typical examples of mel-spectrograms
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(a) Bed quilt
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(b) Metal desk

Fig. 4: Example of mel spectrograms of di↵erent contact objects

are shown in Fig. 4. Figure 4 shows mel-spectrograms when the contact objects
are bedquilt and metal desk. The mel-spectrogram represents the sound power
in each frequency band at each time. We can see that the mel-spectrograms
depend on the contact object.

In this paper, the feature extractor calculates a mel-spectrogram from the
1500-millisecond data sampled at 44.1 kHz. We use an FFT window size of 2048
and shift the window with an overlap size of 512. The number of channels in
the mel-filter bank is 128. We obtain the sound power information for each FFT
window, resulting in a mel-spectrogram dimension of 128⇥ 130.

3.5 Hierarchical Estimator

The hierarchical estimator estimates a smartphone contact object based on a
mel-spectrogram obtained in the feature extractor. The hierarchical estimator
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Fig. 5: Overview of the structure and training of neural network in hierarchical
estimator

consists of estimation models corresponding to each abstraction level. Each esti-
mation model outputs an estimation result and the estimation confidence of the
contact object at a specific abstraction level.

Figure 5 shows the structure and the training overview of neural networks
used in the hierarchical estimator. The neural network consists of Model-1 and
Model-2, each of which includes estimation models corresponding to each ab-
straction level. Model-2 is used for contact-object estimation at each abstraction
level, while Model-1 is an intermediate model used to train Model-2. Model-1 is
discarded after the training.

The neural networks are trained in two rounds. In the first round, we train
neural network models in Model-1 from the higher abstraction level. The model
information at the higher abstraction level is transferred to the model at the
lower abstraction level in the training. In the second round, we train neural net-
work models in Model-2 from the higher abstraction level. We train the models
with fine-tuning based on Model-1 or the higher estimation model in Model-2.

The actual training procedure is below. In this procedure, estimation models
at soft-hard, material, and object levels in Model-i are represented as shModel-i,
matModel-i, and objectModel-i, respectively. We use the dymn10-as deep neural
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network model from Schmid et al. [16] as a pre-trained model. dymn10-as is the
fine-tuned ImageNet architecture trained with acoustic event dataset AudioSet.

1. shModel-1 training:
We train the shModel-1 that consists of dymn10-as, BatchNorm, and Linear,
i.e., Fully-Connected, layers.

2. matModel-1 training:
We transfer the dymn10-as in the shModel-1 in this step. We extract the
dymn10-as in the shModel-1 and append new BatchNorm and Linear layers,
building a matModel-1 model. The matModel-1 is then trained.

3. objModel-1 training:
We transfer the dymn10-as in the matModel-1 in this step. We extract the
dymn10-as in the matModel-1 and append new BatchNorm and Linear lay-
ers, building an objModel-1 model. The objModel-1 is then trained.

4. shModel-2 training:
We transfer the dymn10-as in the objModel-1 in this step. We extract the
dymn10-as in the objModel-1 and append multiple new ReLU-Linear layers,
building a shModel-2 model. The shModel-2 is then trained.

5. matModel-2 training:
We transfer the feature extraction layers in the shModel-2, i.e., dymn10-as
with ReLU and Linear layers, in this step. We extract the feature extraction
layers in the shModel-2 and append new BatchNorm, ReLU, and Linear
layers, building a matModel-2 model. The matModel-2 is then trained.

6. objModel-2 training:
We transfer the matModel-2 except output layer, i.e., dymn10-as followed
by BatchNorm, ReLU, and Linear layers, in this step. We removed the
matModel-2’s output layers and append new Linear layer as an output layer,
building a objModel-2 model. The objModel-2 is then trained.

After the model training is completed, we determine confidence thresholds for
each estimation model in Model-2. As shown in Fig. 3, the confidence thresholds
are set at each abstraction level. We first input all the training data into each
estimation model in Model-2, deriving estimation results and estimation confi-
dence. We then filter incorrect results out. The confidence threshold is calculated
for each estimation model as the mean of the confidence values corresponding
to the remaining, i.e., correct, estimation results.

In this paper, we define the estimation confidence as the maximum output
value of the Linear layer, i.e., the final output layer of each model in Model-
2. The output of the linear layer is a set of real numbers for each class. For
example, because the material-level estimation is a seven-class classification task,
the linear-layer output is expressed as [�2.02,�1.53, 0.45, 5.71, 0.05,�0.42, 1.05].
In this example, the estimation confidence is the maximum output of 5.71.

The hierarchical estimator chooses the estimation results of Model-2 as an
overall contact-object estimation result based on the estimation confidence at
each abstraction level. Let Ts, Tm, To be the confidence threshold at soft-hard,
material, and object levels, respectively, and Cs, Cm, Co be the estimation con-
fidence values at soft-hard, material, and object levels, respectively. The output
of the hierarchical estimator is determined as:



10 H. Nishi et al.

1. When Co � To:
The hierarchical estimator outputs the objModel-2 estimation result.

2. When Cm � Tm:
The hierarchical estimator outputs the matModel-2 estimation result.

3. When Cs � Ts:
The hierarchical estimator outputs the shModel-2 estimation result.

4. When Cs < Ts:
The hierarchical estimator retires the overall estimation process from the
beginning. The data collector collects vibration sound data again, followed
by feature extraction and object estimation. If Cs < Ts in the re-estimation
again, the hierarchical estimator outputs unknown.

When the output of the hierarchical estimator is unknown, the smartphone
search assistance system, shown in Fig. 1, provides information only about the
cover state and the smartphone-located room.

4 Evaluation

We evaluated our smartphone contact-object estimator using the data collected
in a practical environment. We first evaluated the estimation accuracy of the esti-
mation models of each abstraction level as a micro-level evaluation. We then eval-
uated the overall contact-object estimation accuracy, i.e., smartphone contact-
object estimation based on estimation confidence, as a macro-level evaluation.
Finally, the estimation accuracy against untrained objects was evaluated.

4.1 Experiment Setup

Figure 6 shows the data collection experiment setup. A target contact object
was put on a metal desk with a height of approximately 70 centimeters. We
put an ASUS Zenfone 8 smartphone face up on the target object and installed
an audio-technica AT2050 microphone approximately 1 meter away from the
object at a height of approximately 70 centimeters. We set the directionality
of the microphone toward the smartphone. The microphone was connected to a
ZOOM H6 audio recorder. Note that the oversized target objects that could not
be placed on the metal desk were directly placed on a wooden floor.

Figure 7 shows the list of target contact objects in this experiment. We used
21 contact objects, which can be described in 7 materials. Based on the material,
we assigned a label of soft or hard to each object.

We collected vibration sound data in the following procedure. The sound data
was collected while changing the position and orientation of the smartphone for
each trial to emulate di↵erent contact conditions.

1. Place the smartphone on the contact object.
2. Start recording.
3. Activate vibration for one second.
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Fig. 6: Experiment setup
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deskCardboardThin-bookThick-bookobject

Fig. 7: Target contact objects in this experiment

4. Take the smartphone o↵ from the contact object and place the smartphone
again to change the position and orientation of the smartphone.

5. Repeat steps 3 and 4 for 50 times.
6. Stop recording.

In total, we collected the recording data of 50 trials for each object. At the
beginning of each trial, we made a sound of 2000Hz pure tone for 100 milliseconds
as a trial onset marker. Referring to the trial onset markers, we split the recording
data for each trial.

To demonstrate the e↵ectiveness of the proposed contact-object estimator,
we compared the estimation accuracy between the following two methods. We
calculated the F-score for each label and calculated the harmonic mean of the
F-scores for all labels, deriving the estimation accuracy.

1. Proposed method
The method presented in Sect. 3. For the proposed method, we evaluated
the F-score with a hold-out method, which randomly splits the dataset into
training and test datasets only once, because of the long training time.

2. SVM method
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Table 1: Estimation accuracy at each abstraction level
Abstraction level SVM Model-1 Model-2
Object 0.843 0.824 0.857
Material 0.850 0.714 0.876
Soft-hard 0.881 0.890 0.938

The smartphone contact-object estimation method presented in our previous
work [2]. The SVM method uses a support vector machine (SVM) classifier
with mel-frequency cepstral coe�cients (MFCCs) as features instead of a
mel-spectrogram. We prepared for estimation models for each abstraction
level and separately trained the estimation models. We evaluated the SVM
method with the harmonic mean of estimation accuracies derived with 10-
fold cross-validation.

4.2 Estimation Accuracy of the Estimation Models at Each
Abstraction Level

To evaluate the performance of the estimation models at each abstraction level,
we compared the estimation accuracy of models in Model-1 and Model-2. The
collected data were randomly sorted and split in the ratio of training : validation :
test = 6 : 2 : 2. We then trained and evaluated the estimation models at each
abstraction level.

Figures 8 and 9 show the confusion matrices of contact-object estimation
results for each abstraction level using models in Model-1 and Model-2, respec-
tively. From Fig. 8, we can see that Model-1 successfully estimated the contact
objects at the object and material levels. On the other hand, there were incor-
rect estimations at the material level, especially for soft objects such as memory
foam.

Referring to Fig. 9, we can confirm that Model-2 demonstrated a high degree
of success in estimating objects at all abstraction levels. Particularly at the
material level, Model-2 appears to have outperformed Model-1.

Table 1 shows the estimation accuracy of the estimation models at each ab-
straction level. The table also shows the estimation accuracy of the SVMmethod.
As shown in Table 1, the proposed method, i.e., Model-2, showed the highest
accuracy among the SVM, Model-1, and Model-2 at all the abstraction levels.
At the material and soft-hard levels, Model-2 greatly improved the estimation
accuracy compared to Model-1. The 2-round training successfully captured the
information of other abstraction levels, resulting in higher accuracy.

The estimation accuracy of the models in Model-1 was lower than that of the
SVM method at the material and soft-hard levels, as shown in Table 1. This was
mainly caused by the limited amount of training data against the complicated
neural network. The related studies [6] and [8] have also shown the di�culties
in the recognition of soft and hard. Our 2-round training approach was e↵ective
in training the soft-hard classifier with the limited training data.
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(b) Material level
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(c) Soft-hard level

Fig. 8: Confusion matrices of contact-object estimation results by Model-1
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(b) Material level
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(c) Soft-hard level

Fig. 9: Confusion matrices of contact-object estimation results by Model-2

The above results confirm that the estimation model training using the infor-
mation derived from other abstraction levels improved the estimation accuracy.

4.3 Overall Estimation Accuracy

To evaluate the overall performance of contact-object estimation, we evaluated
the estimation accuracy of contact-object estimation based on estimation confi-
dence. For each trial of the collected data, we obtained a final estimation output
from the estimation results at each abstraction level derived in the previous
subsection. The output of the hierarchical estimator was determined based on
the estimation confidence according to the estimation procedure presented in
Sect. 3.5. We then calculate the harmonic mean of the F-score for estimation
results at each abstraction level.

Table 2 shows the overall estimation accuracy of the SVM and Model-2, i.e.,
the proposed method. The table also shows the estimation completion rate, which
is the rate of test trials whose estimation confidence exceeded the confidence
threshold. Table 2 shows that the estimation accuracy of the proposed method
was higher than that of the SVM method at all the abstraction levels. Comparing
the estimation accuracy of the SVM and the proposed method, we can confirm
that the proposed method improved the overall estimation accuracy.

In Table 2, the estimation completion rate of the SVM and Model-2 at the
object level was 43.5% and 51.4%, respectively. This result indicates that we
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Table 2: Overall estimation accuracy and estimation completion rate
Abstraction level Accuracy Estimation completion rate

SVM Model-2 SVM Model-2

Object 0.967 0.991 43.5% 51.4%
Material 0.877 0.909 19.2% 10.5%
Soft-hard 0.954 1.000 15.4% 10.0%

derived a high accuracy for more number of test trials by the proposed method
compared to the SVM method. The total estimation completion rate can be
calculated by summing the estimation completion rates at all the abstraction
levels. The total estimation completion rate of the SVM method and Model-2
was 78.1% and 71.9%, respectively. Both methods could estimate the contact
object for more than 70% of the trials. At material and soft-hard levels, the
estimation completion rate of SVM was higher than that of Model-2. Model-2
discarded estimation results at these abstraction levels when the confidence level
was low, resulting in high accuracy.

Comparing Tables 1 and 2, we can confirm that the estimation accuracy for
both SVM and Model-2 was improved at all the abstraction levels. The estima-
tion output decision based on the estimation confidence successfully improved
the estimation accuracy at each abstraction level, not depending on the estima-
tion model.

The above results confirm that the contact-object estimation based on esti-
mation confidence improved estimation accuracy.

4.4 Estimation Accuracy against Untrained Objects

Our final goal is to realize a contact-object estimator that supports untrained
objects. We evaluated the contact-object estimation accuracy when the smart-
phone is on an untrained object. We performed Leave-One-Object-Out (LOOO)
cross-validation in this evaluation. For each of the 21 objects, we used one object
as test data and used the remaining data of 20 objects as training data to derive
the harmonic mean of F-scores. Note that the training data was again randomly
split in the ratio of training : validation = 8 : 2 for the neural network training.

First, we evaluated the estimation accuracy without the confidence-based
decision. Table 3 shows the estimation accuracy of SVM, Model-1, and Model-2
against untrained objects without estimation confidence-based decision. We ex-
cluded the estimation accuracy at the object level because the object-level esti-
mator always outputs an incorrect estimation result as we used supervised learn-
ing algorithms. The estimation accuracy of the proposed method, i.e., Model-2,
was 0.521 and 0.872 at material and soft-hard levels, respectively, which were
higher than those of the SVM of 0.330 and 0.812. We can confirm that Model-2’s
generalization performance was higher than that of the SVM at all the abstrac-
tion levels. Comparing the estimation accuracy between Model-2 and Model-1,
we can also confirm that the Model-2’s generalization performance was also
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Table 3: Estimation accuracy of contact-object estimation for untrained objects
without confidence-based decision

Abstraction level SVM Model-1 Model-2
Material 0.330 0.483 0.521
Soft-hard 0.812 0.813 0.872

Table 4: Overall estimation accuracy against untrained objects
Abstraction level Accuracy Estimation completion rate

SVM Model-2 SVM Model-2

Object – – 21.0% 7.8%
Material 0.338 0.580 20.0% 46.2%
Soft-hard 0.740 0.836 25.0% 5.8%

higher than that of Model-1. Our 2-round training with the hierarchical neu-
ral network improved the generalization performance and improved the object
estimation performance against untrained objects.

Next, we evaluated the overall estimation accuracy against untrained objects.
Table 4 shows the overall estimation accuracy, i.e., estimation accuracy with the
confidence-level decision, against untrained objects. The estimation accuracy of
Model-2, i.e., the proposed method, was 0.580 and 0.836 at the material and
soft-hard levels, respectively, which were higher than those of the SVM of 0.338
and 0.740. We can confirm that Model-2’s generalization performance was higher
than that of the SVM method at all abstraction levels.

At the object level, the estimation completion rate of the proposed method
was 7.8%, which is lower than that of the SVM method of 21.0%. For untrained
objects, estimation completion at the object level means incorrect estimation.
The lower completion rate of the proposed method at the object level indicates
high robustness against untrained objects.

At the material level, the estimation completion rate of the proposed method
was higher than that of the SVM method. The proposed method performs better
in capturing features of hierarchical object representation, which resulted in the
higher estimation completion rate for untrained objects.

On the other hand, at the soft-hard level, the estimation completion rate
of the proposed method was lower than that of the SVM method. In total,
estimation was completed for 7.8 + 46.2 + 5.8 = 59.8% trials in the proposed
method, while 21.0 + 20.0 + 25.0 = 66.0% of estimation trials were completed
in the SVM method. Note that estimation completion does not indicate correct
estimation. In the proposed method, we sacrificed unsure estimation results,
which resulted in high accuracy and low estimation completion rate. There might
be room to improve the soft-hard estimation of the proposed method while
keeping estimation accuracy.

The above results confirm that our contact-object estimator, employing a
hierarchical neural network and considering abstraction level, improved the es-
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timation accuracy against untrained objects. We think the estimation accuracy
was still insu�cient for practical use, especially at the material level. We are
working to more improve estimation accuracy against untrained objects.

5 Conclusion

In this paper, we proposed a smartphone contact-object estimator for an in-home
smartphone search support system. Machine learning-based contact-object esti-
mators have been proposed, though, they have di�culties in estimation against
untrained objects. We therefore proposed a contact-object estimator considering
abstraction level to support untrained objects. The proposed method relies on
two approaches: (1) We prepare hierarchical neural networks for multiple ab-
straction levels and switch the neural network to a higher abstraction level when
the estimation is unconfident. (2) We train the neural network using informa-
tion derived from other abstraction levels. We conducted experimental evalua-
tions and confirmed that our contact-object estimator estimated contact objects
with an accuracy of 0.991 for 21 objects, demonstrating the e↵ectiveness of the
above two approaches. We are planning to work on contact-object estimation
considering other surrounding conditions such as a cover state.
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