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Abstract—In this study, we propose a Put-and-Play (PnP)
Internet of Things (IoT) system, an IoT system that requires
no initial setup. IoT systems require the initial setup consisting
of device location information setup, network configurations,
and device coordination. Although configuration automation and
assistant methods for network configurations and device coor-
dination have been proposed, device location information setup
still needs manual operations. This paper therefore proposes a
room-by-room device grouping method that groups IoT devices
in the same room. We utilize IEEE 802.11ac Channel State
Information (CSI) to group IoT devices in the same room with
a non-supervised learning algorithm. Experimental evaluations
conducted in a smart house environment reveal that our device
grouping method successfully groups IoT devices in the same
room with an adjusted Rand index (ARI) of up to 1.00.

Index Terms—Internet of Things (IoT), IoT device grouping,
Channel State Information (CSI), Put-and-Play (PnP).

I. INTRODUCTION

Recent development in wireless communication technolo-
gies and hardware technologies have made the Internet of
Things (IoT) systems prevalent. IoT systems are used not only
in the industry such as factory automation systems but also
in a non-expert domain such as home automation systems
including smart houses.

To use IoT systems, initial setup is mandatory. The setup
mainly consists of three steps: device location information
setup, network configurations, and device coordination as
automation. Even in a non-expert domain, users need to com-
plete these steps to use an IoT system such as a smart house.
Non-expert users have limited knowledge of IoT systems and
have difficulties in such setup.

The goal of this research is to realize a Put-and-Play (PnP)
IoT system, i.e., an IoT system that requires no initial setup in
a non-expert domain. In this paper, we focus on a smart house
scenario. After we install IoT devices in a smart house, the
IoT devices semi-automatically connect to a WLAN access
point (AP) and estimate their own location by themselves.
The PnP IoT system learns how a user uses IoT devices based
on IoT device usage logs for a specific duration of time and
automatically completes device coordination.

There has been much work reporting automatic config-
uration methods [1–9]. These studies have proposed auto-
matic network configuration methods [1–5] as well as Wi-
Fi Protected Setup (WPS) and smart device coordination
methods [6–9]. Although these methods help us to finish
a part of the initial setup, none of the work helps us to
finish the location information setup. Many indoor localization

technologies have been proposed, which require prerequisites
such as site survey and reference node installation. We also
need to input device location information such as a room name
even if we get the absolute location of IoT devices.

To realize a PnP IoT system, we propose a semi-automatic
location setup method. IoT devices are automatically grouped
based on the room where the IoT devices are installed. When a
user uses an IoT device, the PnP IoT system asks the user the
location of the device, i.e., the room name where the device
is installed, using an interface such as a smart speaker. The
location of the remaining IoT devices in the same group is
then automatically configured.

This paper presents a room-by-room device grouping sys-
tem using IEEE 802.11ac (WLAN) CSI information. Recent
IoT devices are equipped with a WLAN module. Assume
that IoT devices in a specific room are close to each other.
Communication between a WLAN access point (AP) and
neighboring IoT devices has a similar influence from human
movement. We therefore group IoT devices based on the
influence of human movement on WLAN CSI.

Note that we perform neither human localization nor human
detection. We rely only on the influence of human movement
to group IoT devices without locating humans. Minimal
information is requested to complete the setup of a PnP IoT
system with the proposed device grouping system.

By conducting experiments in a smart house environment,
we show the feasibility of our room-by-room device grouping
system. Specifically, our main contributions are threefold:

• We proposed a Put-and-Play (PnP) IoT system. To the
best of our knowledge, an IoT system that requires
no initial setup, especially in terms of device location
information setup, is novel in the field of smart IoT
configuration.

• We present the design of the room-by-room IoT device
grouping system using WLAN CSI. We utilize the influ-
ence of human movement on CSI to group IoT devices
based on the room where the devices are installed.

• We show the feasibility of our room-by-room device
grouping system by experimental evaluations conducted
in a smart house with actual WLAN devices.

The remainder of this paper is structured as follows. In
Section II, we discuss related work. Section III presents the
design of the room-by-room device grouping system, followed
by the experimental evaluations in Section IV. Finally, we
conclude the paper in Section V.978-1-6654-3540-6/22 © 2022 IEEE
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II. RELATED WORK

This research relates to automatic network configuration,
IoT device coordination, and CSI-based indoor localization.

A. Network Configuration
Automatic network configuration is one of the popularly

studied topics in the field of networking. The Bootstrap
Protocol (BOOTP) and Dynamic Host Configuration Protocol
(DHCP) are famous and widely used automatic network
configuration protocols. Wire-connected IoT devices can use
these protocols to automatically configure networking.

For wireless networks such as IEEE 802.11 wireless local
area networks (WLANs), secure network configuration is
mandatory to protect the network from malicious devices.
The WPS is one of the popular methods to easily associate a
WLAN device with an WLAN AP. Pushing the WPS button
on both a device and an AP automatically associates the
device to the AP.

IoT systems rely on not only WLAN networks, but also
ad hoc networks between IoT devices. Baresi et al., Lee
et al., Funai et al., and Li et al. presented peer-to-peer or
ad hoc networks built on Wi-Fi Direct [1–4]. Wi-Fi Direct is
a standard providing direct communication using IEEE 802.11
without an AP. Wi-Fi Direct allows us to build networking
groups among proximity devices. The proposed methods
connect the Wi-Fi groups each other by such as putting a
gateway. Security is also an important aspect in wireless
networking. Sheng et al. studied secure device-to-device Wi-
Fi Direct communication [5].

These methods are helpful for our final goal, i.e., PnP IoT
systems, in terms of automatic network configuration.

B. IoT Device Coordination
IoT systems use many IoT sensors actuators. To realize IoT

applications and services, device coordination is mandatory.
Non-expert users might have difficulties in the device config-
urations. Smart device configuration methods have therefore
been proposed.

In smart house applications, non-expert users, who don’t
have much knowledge on IoT devices and networking, need to
coordinate devices. To support such non-expert users, device
coordinator using mixed reality (MR) has been proposed.
In [6], IoT device installation guidance system using MR has
been presented. Device configurations including coordination
are done by users, who get instructions shown on the overlay
display. HoloFlows is an extended version of method pre-
sented in [6], which allows users to easily coordinate IoT
devices using a head-mounted display [7].

A context-based device configuration is another approach
approach for completely automatic device configuration.
Mayer et al. presented a goal-driven smart environment con-
figurator [8]. This method asks a user about the goal of
the state of a smart environment to learn device association
configurations. Based on the context and the user’s answer,
devices are automatically associated. Cheng et al. presented
a situation-aware device association method [9]. Through the
time series of raw events derived by sensors, situational events
are automatically detected. With an extended version of event-
condition-action triggering mechanism, the proposed method

automatically configures IoT devices including sensors and
actuators.

We believe that these technologies will make us free from
manual device coordination in the future. This paper therefore
focuses on the automation of device location information
setup.

C. CSI-based Indoor Localization

Although WLAN CSI is utilized in many sensing applica-
tions such as human activity recognition, sign language recog-
nition, keystroke recognition, and acoustic eavesdropping, this
paper focuses on device indoor localization.

Fingerprinting is a widely used indoor localization method.
PinLoc is pioneering fingerprinting work utilizing WLAN
CSI, which consists of training and localization phases [10].
In a training phase, WLAN CSI information everywhere in a
localization target area is collected as fingerprints, which is
called a site survey. In a localization phase, PinLoc measures
CSI at the target location and finds the nearest fingerprint
to estimate the location. CSI fingerprinting combined with
deep learning increasing accuracy has also been proposed [11,
12]. Although CSI fingerprinting accurately estimates device
location, a site survey, i.e., CSI data collection for training,
is mandatory. Tong et al. proposed theoretical fingerprints to
reduce the cost of the site survey, still requiring CSI data
before the use of the localization system. In contrast to these,
our approach uses non-supervised learning, which requires no
training data.

Model-based localization requires no training data. FUSIC
is a localization method combining Fine Timing Measurement
(FTM) and Multiple Signal Classification (MUSIC) [13].
MUSIC is an angle-of-arrival (AoA) estimation method using
phase difference on arrayed-antenna. FTM enables us to
estimate the distance between a transmitter and receiver.
Combining the estimated distance with the estimated angle
of arrival, FUSIC estimates device location. SpotFi performs
MUSIC AoA estimation [14]. SpotFi merges phase difference
information derived on multiple channels to emulate wide
bandwidth signals, resulting in high accuracy. Chronos also
uses multiple channel information to estimate AoA using
an arrayed antenna on a single device [15]. Although these
methods estimate accurate location, indoor map information
is mandatory to derive device context information such as the
room name where the device is installed. Our device grouping
approach can easily be combined with room-type estimation
using an IoT device [16].

III. ROOM-BY-ROOM DEVICE GROUPING SYSTEM

A. Key Idea

Our key idea is to group IoT devices based on CSI changes
affected by human movement. The WLAN CSI represents
wireless communication paths between a transmitter and
receiver. When a human is moving around a transmitter
or receiver, CSI is highly affected by the movement. We
therefore extract and analyze the CSI changes to group nearby
devices.
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Fig. 1. Overview of room-by-room device grouping system

B. Design Overview

Figure 1 shows the system overview of the room-by-room
device grouping system. The device grouping system consists
of a data retriever and device grouping block. The data
retriever collects compressed WLAN CSI data from multiple
IoT devices while the IoT devices communicate with a WLAN
AP. The data retriever compensates for CSI phase rotation
and passed the CSI data to the device grouping block that
extracts features from the CSI data and groups IoT devices
with a clustering algorithm.

The following subsections describe the details of each
block.

C. Data Retriever

The data retriever collects WLAN compressed CSI data
from multiple IoT devices. As shown in Fig. 1, we assume
that multiple IoT devices have already been installed in
an environment. The IoT devices are associated with an
IEEE 802.11ac WLAN AP to connect to the Internet and to
communicate with each other.

To efficiently collect CSI from multiple IoT devices, we
used the CSI monitoring system presented in [17]. While IoT
devices communicate with a WLAN AP, CSI feedback frames
are periodically sent from the IoT devices to the WLAN AP.
The data retriever snoops the CSI feedback frames using a
CSI collector installed near the WLAN AP.

Actual CSI feedback frames are IEEE 802.11 Action
No Ack management frames, which include a Very High
Throughput (VHT) protocol compressed beamforming re-
port [18]. CSI is described by CSI angles �ij(0  �ij < 2⇡)
and  lj(0   lj < ⇡/2) in the VHT beamforming reports.

Index integers i, j, and l are defined in a CSI compression
process. The range of i, j, and l is determined by the number
of antennas on the WLAN AP and IoT devices. Table I
shows the relationship between the number of antennas and
CSI angles. IEEE 802.11ac uses 56 subcarriers including four
pilot subcarriers. We can collect compressed CSI data as
52(|�ij |+ | lj |) angles from a single beamforming report.

Before extracting features from CSI angles, we compensate
phase rotation in a phase compensator. Similar to the raw
CSI, compressed CSI also suffers from phase rotation problem
because 0  �ij < 2⇡. We use the approach presented
in [19]: sin�ij and cos�ij instead of �ij are passed to the
following device grouping block. The total number Nangle of

TABLE I
CSI ANGLES �ij ,  lj AND SIZE OF CSI FEEDBACK MATRIX [18]

Number Size of CSI angle Order of angles
of antennas |�ij | | lj | in beamforming report

2⇥ 1 1 1 �11,  21
2⇥ 2 1 1 �11,  21
3⇥ 1 2 2 �11, �21,  21,  31
3⇥ 2 3 3 �11, �21,  21,  31, �22,  32
3⇥ 3 3 3 �11, �21,  21,  31, �22,  32
4⇥ 1 3 3 �11, �21, �31,  21,  31,  41
· · · · · · · · · · · ·

  Device 3  Device 2  Device 1

mean median mean median

Subcarrier 
–28

Subcarrier 
28

Calculate
features
for each
window

0.9

0.7

0.9

0.8

0.7

0.7

0.8

0.8

0.7

0.8

0.8

0.8

Select  windows

Feature vector

Fig. 2. Overview of feature extraction process. For each device, features are
calculated for each of windows shown as blue rectangles. Nwin windows
shown as red rectangles are selected to construct a feature vector.

angles passed to the device grouping block is calculated to be
Nangle = 52(2|�ij |+ | lj |).

D. Device Grouping

The device grouping block groups IoT devices based on the
features extracted from the windowed CSI angle data. Figure 2
shows the overview of feature extraction process.

The CSI angle data is first divided into chunks with a
fixed time-length window. Note that the number of samples,
i.e., VHT beamforming reports, of each IoT device in each
window is dependent on the window and device.

For each IoT device and each window, the device grouping
block calculates seven features: mean, median, maximum
(max), minimum (min), standard deviation (std), peak-to-peak
(p2p), and interquartile range (iqr). These features are often
used in accelerometer-based activity recognition systems [20,
21]. We use the same features because we aim to extract
the influence of human movement, although we are using
compressed CSI instead of accelerometer data. We don’t think
all the features are useful to group devices. In Section IV-B,
some of these features are selected based on the device
grouping performance.

To efficiently extract the influence of human movement,
multiple windows are picked to construct a feature vector.
Let Nwin be the number of windows picked for the feature
vector construction. We randomly choose Nwin windows and
line up the features calculated for these windows to construct
a feature vector. Each feature is calculated for each of Nangle

CSI angles. The dimension of a feature vector is therefore
NfeatureNwinNangle , where Nfeature is the number of selected
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Fig. 3. Experiment setup in 1-bedroom smart house. Six smartphones were
installed in dining room, living room, and bedroom. WLAN AP and CSI
collector were installed in dining room.

TABLE II
LOCATION AND HEIGHT OF DEVICES

Device Location Height [cm]
WLAN AP Dining table 74
CSI Collector Dining table 74
Device 1 Dining table 74
Device 2 Kitchen cart 92
Device 3 TV board 43
Device 4 Low table 40
Device 5 On floor 0
Device 6 On plastic storage box 15

features among the seven features above. Smaller the number
Nwin of windows is better to minimize the data amount for
device grouping. Section IV-D evaluates the influence of the
number Nwin of windows and the window size.

Finally, the device grouping block performs clustering using
the feature vectors to group IoT devices. We don’t limit
the clustering algorithm. Any clustering algorithm can be
integrated into our device grouping method. The performance
is dependent on the integrated clustering algorithm.

IV. EVALUATION

To demonstrate the effectiveness of our IoT device grouping
system, we conducted initial evaluations using CSI data
collected in our 1-bedroom smart house.

A. Experiment Setup
Figure 3 illustrates the experiment setup. Six Galaxy S7

edge smartphones were installed in a dining room, living
room, and bedroom as devices 1 to 6 in Fig. 3. A WLAN AP
and MacBook Pro CSI collector were installed in the dining
room near device 1. Note that all the walls are thin wooden.

Table II shows the location and height of each device. The
WLAN AP and CSI collector were installed on a dining table.
Considering IoT devices such as smart speakers, smart kitchen
appliances, and robotic vacuum cleaners, we installed devices
at a height between 0 to 100 centimeters.

UDP frames were sent at 10 Hz via the WLAN AP to
each device. The devices, i.e., Galaxy S7 edge smartphones,
automatically sent a compressed beamforming report to the
AP every time the devices received a UDP frame. Using the
CSI collector, we collected compressed beamforming reports

TABLE III
DATASETS FOR EVALUATION. WE USE A WILDCARD CHARACTER * TO
DESCRIBE COMBINED DATASETS IN THIS PAPER. FOR EXAMPLE, */OP
REPRESENTS THE COMBINED DATASETS OF ALL THE DATASETS WITH

OPENED DOORS.

Dataset Abbv. Human Door
(5 minutes each) location state
No human w/ opened doors NH/OP — Opened
No human w/ closed doors NH/CL — Closed
Dining room w/ opened doors DN/OP Dining room Opened
Dining room w/ closed doors DN/CL Dining room Closed
Living room w/ opened doors LV/OP Living room Opened
Living room w/ closed doors LV/CL Living room Closed
Bedroom w/ opened doors BD/OP Bedroom Opened
Bedroom w/ closed doors BD/CL Bedroom Closed

as CSI data. We emphasize that we made no modification on
Galaxy S7 edge smartphones.

We created eight datasets shown in Table III by collecting
CSI data while a human was walking in a specific room with
all the doors opened and closed. Each dataset is the CSI data
collected in five minutes. In this paper, we use a wildcard
character * to describe combined datasets. For example, NH/*
represents the combined datasets of NH/OP and NH/CL.

Not all the beamforming reports were captured due to
the packet loss. We therefore dropped data when there were
many packet losses. Each dataset was split into chunks with a
fixed time-length window, as described in Section III-D. We
calculated the WLAN frame loss rate for each window and
dropped windows whose frame loss rate is above 20%.

With these datasets, we grouped devices and evaluated the
grouping performance. Although we don’t limit the clustering
algorithm for device grouping, this paper uses k-means, which
is a simple clustering algorithm and is sufficient to show the
baseline performance of our device grouping system. The k
for k-means was set to three, which, we assume, is given as
the number of rooms.

The device grouping performance was evaluated using the
adjusted Rand index (ARI), which is a popularly used metric
to evaluate the clustering performance. The ARI takes values
�1  ARI  1 and indicates the similarity between two
clustering results. High ARI indicates high grouping accuracy.
We note that we cannot evaluate classification performance
because our system aims to group devices, not classify each
device into rooms.

B. Feature Selection

To find the features strongly affected by human movement,
we evaluated the grouping performance using a single fea-
ture. We divided CSI data into 10-second windows for each
device in each dataset and calculated features as presented in
Section III-D. We then randomly selected a single window
from each of */OP datasets to create a feature vector with
Nwin = 4 windows. Using the feature vector for each feature,
we grouped devices. We repeated this grouping process 100
times and calculated the mean ARI for each feature. The mean
ARIs were also calculated for */CL and */* datasets.

Table IV shows the device grouping performance in ARI for
each feature. As shown in Table IV(a), for */OP datasets, the
highest ARI was achieved with the standard deviation of  lj .
The standard deviation, peak-to-peak, and interquartile range



TABLE IV
DEVICE GROUPING PERFORMANCE (ARI) FOR EACH FEATURE

Feature
(a) */OP datasets (b) */CL datasets (c) */* datasets
sin�ij ,  lj

sin�ij ,  lj
sin�ij ,  ljcos�ij cos�ij cos�ij

mean 0.10 0.40 0.44 �0.01 0.44 0.35
median 0.10 0.44 0.44 �0.03 0.45 0.36
max 0.47 0.39 0.41 0.43 0.44 0.39
min 0.60 0.43 0.39 0.35 0.52 0.44
std 0.69 0.89 0.34 0.81 0.63 0.93
p2p 0.69 0.83 0.52 0.76 0.81 0.89
iqr 0.45 0.85 0.28 0.87 0.36 0.93

TABLE V
DEVICE GROUPING PERFORMANCE (ARI) FOR EACH FEATURE WITH

RANDOMLY SELECTED WINDOWS

Feature sin�ij , cos�ij  lj
mean 0.40 0.35
median 0.41 0.34
max 0.46 0.43
min 0.44 0.44
std 0.49 0.92
p2p 0.60 0.78
iqr 0.31 0.97

of  lj showed relatively high ARI compared to other features.
For both of */CL and */* datasets, we can see a similar
tendency in Table IV(b) and (c). These results indicate that
the changes in CSI had high contributions to device grouping.

Focusing on standard deviation, peak-to-peak, and in-
terquartile range, we can see that  lj showed higher ARI
compared to sin�ij , cos�ij for all the datasets. The �ij and
 lj represent relative phase and amplitude difference between
antennas, respectively [22]. The higher ARI of  lj indicates
that  lj , i.e., relative amplitude difference, more contributed
to the extraction of human movement near a device.

Window selection such that one from each dataset is
impractical because each dataset corresponds to the human
location and door states, which cannot be estimated with-
out a sensor in a practical environment. To confirm the
device grouping performance without human location and
door states, we evaluated the ARI with windows randomly
selected from all datasets. We randomly selected Nwin = 10
windows from the */* datasets to create a feature vector and
grouped devices. The device grouping was repeated 100 times
to calculate the mean ARI. Note that we selected the same
windows for each device. This is natural because we can
collect CSI data from all devices at the same time to create
a feature vector for each of the devices.

Table V shows device grouping performance in ARI for
each feature with randomly selected windows. The highest
ARI was achieved with the interquartile range of  lj . The
ARI was greater than 0.90 with the standard deviation and
interquartile range of  lj . These results indicate that features
extracting the changes such as standard deviation, peak-
to-peak, and interquartile range were effective for device
grouping even if we use randomly selected windows.

In the following evaluations, we used the standard devia-
tion, peak-to-peak, and interquartile range of  lj in device
grouping.

TABLE VI
DEVICE GROUPING PERFORMANCE (ARI) FOR EACH HUMAN LOCATION

Datasets Human ARI
location

NH/* — 0.42
DN/* Dining room 0.27
LV/* Living room 1.00
BD/* Bedroom 0.29
DN/*+LV/*+BD/* 3 rooms 0.95
*/* All rooms 0.95

C. Human Location

Human location affects the device grouping performance
because our device grouping relies on the influence of human
movement on CSI changes. Device grouping performance
was therefore evaluated for each human location. We created
six type of combined datasets based on human location and
randomly selected Nwin = 10 windows in each of the
combined datasets to group devices. We repeated the device
grouping 100 times and calculated the mean ARI.

Table VI shows device grouping performance for each
human location. The 3 rooms results are device grouping
performance for combined datasets when there was a human
in the experiment environment. As shown in Table VI, we de-
rived high ARI for LV/*, DN/*+LV/*+BD/*, and */* datasets.
Results for DN/*+LV/*+BD/* and */* match our idea as we
utilize the influence of human movement in CSI to group
devices. Various human locations enable us to extract different
influence on CSI, which resulted in the high ARI. No human
had no influence on CSI, which made it difficult to correctly
group devices, while human movement in all rooms made it
easy to group devices.

For the LV/* dataset, we also derived a high ARI. A
human in the living room cannot be an obstruct for wireless
communication between WLAN AP and devices in the dining
room and bedroom, which might have resulted in a different
influence on devices in different rooms.

D. Windowing

To group devices with the minimum amount of data, we
evaluated the influence of feature calculation window size and
the number Nwin of selected windows.

First, the influence of the number Nwin of selected win-
dows was evaluated with features extracted from 10-second
windows. We randomly selected Nwin windows from the
combined DN/*+LV/*+BD/* datasets and constructed a fea-
ture vector to group devices. The number Nwin of selected
windows was changed from 1 to 50. The device grouping was
repeated 100 times for each value of Nwin and calculated the
mean ARI.

Figure 4 shows the device grouping performance as a
function of the number Nwin of windows. When Nwin = 1,
the ARI was 0.37. As Nwin increased, the ARI increased.
The ARI is almost saturated at 1.00 when Nwin � 15. This
result might depend on the number of rooms, i.e., three in this
experiment. We believe that we can adjust the number Nwin

of windows based on the number of rooms. Note that the size
of each datasets shown in Table III is almost the same. If a
human stays in a specific room for a long time, we need to



0 10 20 30 40 50
Number Nwin of windows

0.0

0.2

0.4

0.6

0.8

1.0
A

R
I

Fig. 4. Device grouping performance (ARI) as a function of the number
Nwin of windows

0 5 10 15 20 25 30
Window size [s]

0.0

0.2

0.4

0.6

0.8

1.0

A
R

I

Fig. 5. Device grouping performance (ARI) as a function of window size

use non-uniform window selection to efficiently extract the
influence of a human in each room.

Next, the influence of window size was evaluated with the
fixed Nwin . We calculated feature vectors while changing
window size from 2 to 30 seconds. We then randomly selected
Nwin = 10 windows and grouped devices 100 times to
calculate the mean ARI.

Figure 5 shows the device grouping performance as a
function of the window size. When we used the 2-second
window, the ARI was as low as 0.75. As the window size
increased, the ARI increased. The ARI is almost saturated
when the window size is more than 10 seconds. This result
implies that we need to use a sufficient amount of data to
extract human movements. There is room to discuss how we
optimize the window size in a practical environment, which
is one of our future work.

V. CONCLUSION

This paper proposed a Put-and-Play (PnP) IoT system,
which enables us to use an IoT system without an effort
other than installing IoT devices in an environment. To
remove the setup process, the automation of location infor-
mation setup, network configuration, device coordination is
mandatory. As automatic network configurators and device
coordinators have been proposed, we developed a room-by-
room device grouping method for the automation of the device
location information setup. The device grouping method uti-
lizes IEEE 802.11ac CSI to extract the influence of human
movement and groups IoT devices in the same room with
a non-supervised learning algorithm. By conducting exper-
iments in a smart house, we demonstrated that our device

grouping method successfully grouped devices with an ARI
of up to 1.00.
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