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Abstract— Vehicle detection is a basic component for many
applications in intelligent transportation system (ITS). We
are developing a low-cost vehicle detector relying on sound
arrival time difference on two microphones. Our previous
paper presented that our acoustic vehicle detector successfully
detected vehicles with an F-measure of 83 %. However, the
acoustic detector has difficulties in vehicle detection in an
environment with steady noise such as rain noise.

This paper presents a steady-noise suppression method for
the acoustic vehicle detector. Our key idea is to exclude the
influence of steady noise in a sound delay estimation. The
acoustic vehicle detector estimates vehicle sound delay by
finding a peak on a cross-correlation function. We theoretically
analyze the influence of steady noise and remove a peak caused
by the noise to minimize the influence. Experimental evaluations
revealed that the steady-noise suppression method effectively
reduced the noise influence and resulted in F-measures of 0.92
and 0.90 in normal and heavy rain conditions, respectively.

I. INTRODUCTION

Recent development of computing and sensing technolo-
gies has led to many new intelligent transportation system
(ITS) applications. ITS applications are mainly designed to
improve safety, efficiency, accessibility, and dependability of
transportation. A car navigation system considering traffic
jam, automatic cruising system, and self-driving car are
typical examples of ITS.

Vehicle detection is a basic component for many appli-
cations in ITS. Typical examples of vehicle sensors are
loop coils, photoelectric tubes, laser, and ultrasound sensors,
which are installed on or above roads. These vehicle sensors,
however, require roadwork closing target road sections for
deployment and maintenance. In Japan, vehicle sensors are
only available on high traffic roads and highways because
of the deployment and maintenance costs. There are CCTV-
based and probe car-based low-cost vehicle detectors [1–9],
which are applicable to high traffic roads.

We also have presented a low-cost vehicle detector relying
on stereo microphones installed at a sidewalk [10]. Our
acoustic vehicle detector estimates vehicle sound arrival time
difference, i.e., sound delay, between two microphones to
detect vehicles. We experimentally demonstrated that the
acoustic vehicle detector successfully detected vehicles with
an F-measure of 83 %.
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The acoustic vehicle detector, however, has difficulties
in vehicle detection in a noisy environment, especially in
an environment with steady noise such as a rain sound.
The acoustic vehicle detector estimates vehicle sound delay
by finding a peak on a cross-correlation of sound signals
received on two microphones. The steady noise generates a
peak and weaken the peak caused by a vehicle sound.

To tackle the steady noise problem, we present a steady-
noise suppression method for the acoustic vehicle detector.
Our key idea is to mathematically exclude the influence of
steady noise in a sound delay estimation. We formulate the
noise influence in a sound delay estimation and remove a
peak using steady-noise data prior to peak detection. The
steady-noise data is updated when no vehicle is passing
because noise signals are actually quasi-steady and are
changing in a long time. The experimental evaluations re-
vealed that the proposed steady-noise suppression method
successfully improved vehicle detection accuracy by 4 and
13 % in normal and heavy rain conditions, respectively.

Specifically, our key contributions are threefold:
• We theoretically analyze the influence of steady noise

in an acoustic vehicle detector.
• We present a steady-noise suppression method based on

the theoretical analysis. To the best of knowledge, this
is a first trial to reduce the influence of noise in acoustic
vehicle sensing.

• We experimentally compare the performance of vehicle
detector between with and without the steady-noise
suppression.

The remainder of this paper is organized as follows.
Section II briefly describes an acoustic vehicle detector
presented in our previous paper and analyzes the influence
of noise. We design a steady-noise suppression method in
Section III and Section IV presents experimental evaluations
to demonstrate the effectiveness of the noise suppression
method. Section V looks through related works on acoustic
noise reduction methods. Finally, Section VI concludes the
paper.

II. ACOUSTIC VEHICLE DETECTOR

A. Overview of Vehicle Detector

Figure 1 shows an overview of an acoustic vehicle detector
presented in our previous paper [10], which consists of a
sound retriever, sound mapper, and vehicle detector. A sound
retriever is stereo microphones followed by low-pass filters
(LPFs). We install stereo microphones at a sidewalk and
apply a LPF with a cut-off frequency of 2.5 kHz to the sound
signals because majority of frequency components of vehicle
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Fig. 1. Overview of acoustic vehicle detector [10]
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Fig. 2. Microphone setup [10]

sound are less than 2.0 kHz [11]. A sound mapper estimates
vehicle sound delay, i.e., time difference of sound arrival,
on the two microphones and draws a sound map, which is
a map of the sound delay as a function of time. A vehicle
detector finally analyzes the sound map to detect vehicles.

As shown in Fig. 2, two microphones M1 and M2 sepa-
rated by distance D are installed at a sidewalk L away from
the road center. Let x be the location of a vehicle. When a
vehicle is passing x = 0 at time t = 0 at a constant speed of
v, sound delay �t is calculated by the difference of distance
d1 and d2 as:

�t =

d1 � d2
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where c is the speed of sound in air. Equation (1) indicates
that a passing vehicle draws an S-curve. Figure 3 shows
an example of sound map. Two S-curves indicate that two
vehicles were passing. The S-curves are detected using
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Fig. 3. Sound map example

a random sample consensus (RANSAC) robust estimation
algorithm [12].

B. Sound Delay Estimation in Noisy Environment

We first formulate a sound delay estimation in a noise-
free environment. The sound mapper estimates a sound delay
using a cross-correlation function. We use generalized cross-
correlation phase transform (GCC-PHAT) instead of normal
cross-correlation. Let s1(t) and s2(t) be sound signals on
two microphones, S1(f) and S2(f) be frequency-domain
representation of s1(t) and s2(t), respectively. GCC R

P
s1s2(t)

between sound signals s1(t) and s2(t) is defined as:

R

P
s1s2(t) =

Z
Gs1s2(f)

|Gs1s2(f)|
e

j2⇡ft
df, (2)

where
Gs1s2(f) = S1(f)S2(f). (3)

Assume that we receive the same sound signals with sound
delay �t on the two microphones, i.e., s2(t) = ↵s1(t �
�t), where ↵ is an amplitude scaling factor. We can rewrite
Eq. (3) as:

Gs1s2(f) = ↵e

�j2⇡f�t|S1(f)|2. (4)

GCC is therefore calculated to be:

R

P
s1s2(t) =

Z
e

j2⇡f(t��t)
df

= �(t��t), (5)

where �(⌧) is a delta function. We can estimate �t by finding
a peak of GCC.

In a noisy environment, sound signals are mixtures of
vehicle sound v1(t), v2(t) and noise n1(t), n2(t) signals.
Sound signals received on the two microphones in a noisy
environment are described as:

s1(t) = v1(t) + n1(t), (6a)
s2(t) = v2(t) + n2(t) = ↵v1(t��t) + n2(t). (6b)

We derive GCC:

R

P
s1s2(t) = V (t)⌦ �(t��t) +N(t), (7)

where ⌦ represents a convolution operation and

V (t) =

Z
↵Gv1v1(f)

|↵Gv1v1(f)e
�j2⇡f�t

+Gn1n2(f)|
e

j2⇡ft
df,

(8a)

N(t) =

Z
Gn1n2(f)

|↵Gv1v1(f)e
�j2⇡f�t

+Gn1n2(f)|
e

j2⇡ft
df.

(8b)

Figure 4 shows examples of GCC R

P
s1s2(t) calculated

over sound signals derived in no-rain and raining conditions.
Although the GCC in no rain conditions gives a clear peak,
many sub-peaks appear in the GCC in raining condition,
which makes it difficult to find a peak corresponding to a
vehicle. Figure 5 shows a sound map example in raining
conditions, which suffers from many noise points caused by
an incorrect sound-delay estimation.
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Fig. 4. Example of GCC in (a) no rain and (b) raining conditions
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Fig. 5. Sound map example under raining condition

III. STEADY-NOISE SUPPRESSION

A. Key idea

The key idea of steady-noise suppression is to move GCC
noise peaks to a specific sound delay value. The location
of GCC noise peaks randomly changes time to time. We
perform a specific signal processing to move GCC noise
peaks at a constant sound delay that is physically impossible
as a vehicle delay.

Figure 6 shows an overview of a sound retriever block with
steady-noise suppression. Compared to a sound retriever in
Fig. 1, we add couple of blocks to add specific signals cal-
culated from noise data stored in a noise storage block. The
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Fig. 6. Overview of sound retriever block with steady-noise suppression

noise storage block holds frequency component information
of steady-noise signals, which is updated when no vehicle is
passing. The following subsections give design details of a
noise suppression method.

B. Sound Delay Estimation with Steady-Noise Suppression

Let ¯

N1(f) and ¯

N2(f) be frequency-domain representation
of steady-noise signals on two microphones. As shown in
Fig. 6, a sound mapper receives sound signals ¯

S1(f) and
¯

S2(f) given by equations below:

¯

S1(f) = V1(f) +N1(f) +
�� ¯
N1(f)

��
, (9a)

¯

S2(f) = V2(f) +N2(f) + �e

�j2⇡f⌧
�� ¯
N2(f)

��
, (9b)

where � (� 1) is a positive real constant number named
noise supplement factor and ⌧ is a real constant number
named noise delay. When a vehicle sound and noise signals
are uncorrelated, GCC R

P
s̄1s̄2(t) is calculated to be:

R

P
s̄1s̄2(t) = R

P
v1v2(t) +R

P
n1n2

(t) + �R

P
n̄1n̄2

(t), (10)

where R

P
v1v2(t), R

P
n1n2

(t), and R

P
n̄1n̄2

(t) are GCCs of a
vehicle sound, noise, and stored noise, respectively, which
are given by:

R

P
v1v2(t) =

Z
Gv1v2(f)

|Gs̄1s̄2(f)|
e

j2⇡ft
df, (11a)

R

P
n1n2

(t) =

Z
Gn1n2(f)

|Gs̄1s̄2(f)|
e

j2⇡ft
df, (11b)

R

P
n̄1n̄2

(t) =

Z
G|n̄1||n̄2|(f)

|Gs̄1s̄2(f)|
e

j2⇡f(t�⌧)
df. (11c)

When noise signals are very similar to the stored noise,
i.e., N1(f) ⇡ ¯

N1(f) and N2(f) ⇡ ¯

N2(f),
h
R

P
|n̄1||n̄2|(t)

i

MAX
>

⇥
R

P
n1n2

(t)

⇤
MAX

. (12)

Equation (12) implies that GCC R

P
s̄1s̄2(t) tends to be dom-

inated by stored noise signals ¯

N1(f) and ¯

N2(f) when no
vehicle is passing and � � 1. We can control the location of
a GCC peak corresponding to R

P
s̄1s̄2(t) by changing a noise

delay ⌧ because the peak of R

P
s̄1s̄2(t) appears at t = ⌧ .

Maximum vehicle-sound delay is restricted by a physical
setup of microphones. We can easily remove sound map
points corresponding GCC peaks caused by noise signals
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Fig. 7. Sound map example with noise suppressor
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Fig. 8. Examples of rain noise frequency components at time t = 103.45 s
and 406.15 s. Time difference is 406.1� 103.5 = 302.6 s (' 5 minutes).

by choosing a noise delay ⌧ to be an impossible delay for
vehicles.

When a vehicle is passing, we can assume that GCC of
vehicle sound signals is bigger than that of stored noise
signals:

⇥
R

P
v1v2(t)

⇤
MAX

>

h
R

P
|n̄1||n̄2|(t)

i

MAX
. (13)

In this case, a GCC peak is likely to correspond to a vehicle
sound delay �t.

When a noise supplement factor � is too large, a GCC
component �R

P
n̄1n̄2

(t) of stored noise signals in Eq. (10)
cannot be ignored. We experimentally adjust � based on the
magnitude of a vehicle sound and noise signals.

Figure 7 shows an example of sound map with noise
suppression. We set � = 1 and ⌧ = 4 milliseconds in
this figure. Compared to the original sound map shown in
Fig. 5, we can confirm that the noise suppression successfully
reduces sound map points that seem to be caused by a rain
noise. An S-curve clearly appears on a sound map, which is
easily detected by a RANSAC algorithm.

C. Noise data update

Because we are assuming that noise signals are very
similar to a stored noise in Eq. (12), stored noise data needs
to be updated to follow the change of quasi-steady noise

Sound 
Delay

OnNoise 
Update 
Switch Off

Probability 
of Vehicle 
Passing

Time

Threshold

Fig. 9. Example of noise update process

signals in a long time. Figure 8 shows an example of the
change in rain-noise frequency components in approximately
five minutes. Even for a rain noise, frequency components
changed in a long time, such as at 1 kHz, from 5 to 10 kHz,
and at 23 kHz, as shown in Fig. 8.

Stored noise data is regularly updated by a noise updater,
as shown in Fig. 6. The noise updater consists of probabilistic
vehicle detector and thresholding blocks. The probabilistic
vehicle detector calculates probability of vehicle passing. We
apply thresholding to the probability to control input switches
of a noise storage to update noise data stored in the noise
storage when no vehicle is passing.

Figure 9 shows an example of a noise update process.
Switches to a noise storage are only turned on when the
probability of vehicle passing is lower than a threshold. We
use a very low threshold to surely store noise data. When
a vehicle is passing and the probability of vehicle-passing
goes higher than the threshold, we stop the noise update to
avoid storing a vehicle sound as a noise.

We can use any probabilistic vehicle detector for the
noise update as long as the detector calculates probability
of vehicle passing. Although we do not put a limit on the
probabilistic vehicle detector, we employ an ultra low-power
vehicle detection method presented in [13] in our evaluation.

IV. EVALUATION

To demonstrate the effectiveness of our steady-noise sup-
pression method, we conducted experimental evaluations on
a road in our university campus.

A. Experiment Setup

Figure 10 shows an experiment setup. A target road in our
university campus has two lanes, one lane in each direction.
Two microphones, separated by D = 30 centimeters, were
installed approximately L = 2 meters away from the road
center on a tripod at a height of approximately 1 meter.
Maximum sound delay is calculated to be D/c ' 0.88

milliseconds in this setup. We recorded a vehicle sound
using a Sony HDR-MV1 recorder with AZDEN SGM-990
microphones. The sound was recorded at a sampling rate of
48 kHz and with code length of 16 bits. We also recorded a
video monitoring the road as ground truth data.
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Vehicle sound was collected in normal and heavy rain
conditions. We collected a vehicle sound for approximately
23 and 45 minutes, for which 93 and 165 vehicles passed,
in normal and heavy rain conditions, respectively.

Using the collected sound data, we performed vehicle
detection presented in [10] with the sound retriever presented
in Section III. A noise supplement factor and noise delay
were set to � = 1 and ⌧ = 4 milliseconds, respectively.

We calculated an F-measure to evaluate vehicle detection
performance, which is a commonly used metric in classifi-
cation/detection problems. We first counted the numbers of
true positives (TPs), false negatives (FNs), and false positives
(FPs). We then calculated F-measure defined as:

Precision =

TP

TP + FP

, (14a)

Recall =

TP

TP + FN

, (14b)

Fmeasure =
2 · Precision · Recall
Precision + Recall

. (14c)

TPs, FNs, and FPs are defined as the cases that a vehicle is
detected when a vehicle is passing, that no vehicle is detected
when a vehicle is passing, and that a vehicle is detected when
no vehicle is passing, respectively.

B. Vehicle Detection Performance

Table I shows vehicle detection performance in (a) normal
and (b) heavy rain conditions. Table I indicates the following:

• An F-measure of the vehicle detection system with the
steady-noise suppression in normal rain conditions was
0.92. Compared to the vehicle detection without the
noise suppression, an F-measure was increased by 4 %.
In heavy rain conditions, an F-measure with the noise
suppression was 0.90, which is 14 % higher than that
without the noise suppression. In heavy rain conditions,
the noise suppression effectively reduced the influence
of a rain noise.

• A recall was significantly improved by our steady-
noise suppression method. The steady-noise suppres-
sion method reduced sound map points caused by a
rain noise, which greatly decreased the number of FN
detections, resulting in 7 % and 20 % improvement in
normal and heavy rain conditions, respectively.

TABLE I
VEHICLE DETECTION PERFORMANCE

(a) in normal rain conditions
w/ Noise Suppression w/o Noise Suppression

Left to Right Total Left to Right Total
Right to Left Right to Left

TPs 39 41 80 34 39 73
FNs 12 1 13 17 3 20
FPs 0 1 1 0 0 0
Precision 1.00 0.98 0.99 1.00 1.00 1.00
Recall 0.77 0.98 0.86 0.67 0.93 0.79
F-measure 0.87 0.98 0.92 0.80 0.96 0.88

(b) in heavy rain conditions
w/ Noise Suppression w/o Noise Suppression

Left to Right Total Left to Right Total
Right to Left Right to Left

TPs 74 62 136 54 49 103
FNs 20 9 29 40 22 62
FPs 0 0 0 0 0 0
Precision 1.00 1.00 1.00 1.00 1.00 1.00
Recall 0.79 0.87 0.82 0.57 0.69 0.62
F-measure 0.88 0.93 0.90 0.73 0.82 0.76
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Fig. 11. Sound map with FP detection. Red and blue points represent
sound map points and an estimated S-curve, respectively.

• Precision were nearly 100 % both in normal and heavy
rain conditions. An acoustic vehicle detector itself is
robust to a noise in terms of FP detections because
the detector relies on S-curves drawn on sound map
to detect vehicles. Only clear S-curves were detected
by a RANSAC algorithm.

• Comparing Tables Ia and Ib, we can confirm that an F-
measure in heavy rain conditions decreased by 12 points
compared to that in normal rain conditions without the
noise suppression. Heavy rain drastically degraded the
vehicle detection performance. On the other hand, the
decrease in an F-measure was 2 points with the noise
suppression.

The above results confirm that our steady-noise suppres-
sion method effectively reduced the influence of a rain noise
and increased an F-measure by up to 14 %, achieving an
F-measure of up to 0.92.

In normal rain conditions, a FN detection occurred with
the steady-noise suppression, as shown in Table I. Figure 11
shows a sound map with the FP detection. Red and blue



points in Fig. 11 represent sound map points and an S-
curve estimated from the sound map points, respectively.
The FP was caused by sequentially passing vehicles, which
is one of the known issues in our acoustic vehicle detector.
Without the noise suppression, two sequential vehicles were
not detected and became two FNs in Fig. 11, resulted in no
FP detection. On the other hand, the steady-noise suppressor
unveiled the sequential vehicle problem as two S-curves
became sufficiently clear to be detected.

V. RELATED WORKS

To the best of knowledge, this paper is a first attempt to
reduce the influence from steady-noise in an acoustic vehicle
detector. In this section, we briefly look through acoustic
noise reduction methods.

For noise reduction, empirical mode decomposition
(EMD) based approaches have been reported [14–16]. Sound
signals are decomposed into frequency components using
EMD, which are more divided into signals and noises based
on an intrinsic mode function (IMF) of the each frequency
component. The EMD-based methods find a noise based on
the characteristics of a noise. The characteristics of a noise,
however, are dependent on a noise source, which makes
difficult to apply to the acoustic vehicle detector because we
cannot restrict a noise source in our scenario. Moreover, the
EMD-based methods require at least three microphones at a
specific configuration increasing deployment costs, while we
are using two microphones with small constraints.

A noise reduction method steered response power phase
transform (SRP-PHAT) using a microphone array has also
been proposed [17]. This method reduces noise by combining
SRP and GCC, both of which are used as sound source local-
ization methods. SRP-PHAT subtracts noise power calculated
from GCC over time-shifted sound signals to improve source
localization accuracy. In our case, the average of GCC over
noise signals is almost zero for steady noise. SRP-PHAT has
small effect on steady-noise reduction.

For environmental noise reduction, soft thresholding
(STH) based approach has been proposed [18]. This method
decomposes sound signals by Wavelet transform and applies
a soft threshold to distinguish noise components from a target
sound. Although the STH-based approach is effective in envi-
ronmental noise reduction, time-frequency characteristics of
noise and sound must be different. We again cannot restrict
a noise source in our scenario.

VI. CONCLUSION

In this paper, we presented a steady-noise suppression
method for an acoustic vehicle detector to reduce the in-
fluence of a steady noise. Our key idea is to remove the
influence of a noise in a sound delay estimation. The acoustic
vehicle detector estimates vehicle sound delay on two micro-
phones by finding a peak on a cross-correlation function.
We perform a specific signal processing to move peaks
on a cross-correlation caused by noise signals, avoiding

incorrect peak detection. Experimental evaluations revealed
that our steady-noise suppression method effectively reduced
the influence of a noise and achieved vehicle detection with
F-measures of 0.92 and 0.90 in normal and heavy rain
conditions, respectively.
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