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Abstract—In embedded system development, a crucial task
is to reduce the maximum power consumption owing to power
source limitations while maximizing the quality of service. The
tradeoff between power consumption and quality of service needs
to be resolved. If software can change its power consumption
in accordance with the power consumption of hardware, it can
reduce the maximum power consumption while increasing the
quality of service. In this paper, we propose a model-based
Development methodology for software with self-adaptive power
consumption. With the proposed method, software changes its
behavior during runtime by linking state-machine diagrams de-
scribed by Executable UML to a feature model used in Software
Product Line development. This method makes it possible to
change the power consumption due to software according to
the power consumption of the whole target device. The target
software can maximize the quality of service under certain power
constraints. Therefore, the target software can satisfy the tradeoff
between power consumption and quality of service. Evaluation
results showed that the average response time was about (.22 s,
and the adaptive rate was about 87.6%.

Index Terms—Embedded System, Self-adaptive Software,
Model-Driven Development, Energy Analysis

I. INTRODUCTION

In embedded system development, size limitations and
manufacturing costs are common issues. In the case of battery-
driven devices, the battery size is restricted by the hardware
size. This scales down the battery storage capacity and short-
ens the operating time. The operating time is also shorted when
the embedded system provides multiple functions and is used
in many types of scenarios. With this backgrounds, the power
consumption needs to be reduced as much as possible to meet
the uptime requirements. On the other hand, there is a tradeoff
between the power consumption and quality of service. In
embedded software development, there is a need to both
reduce the power consumption while improving the quality
of service. If the software can change its power consumption
according to the power consumption of the hardware, it can
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minimize power consumption while maximizing quality of
service.

Self-adaptive software development is one of the solu-
tions to this challenge. The runtime circumstances constantly
change. Therefore, the developer cannot describe the best be-
havior in the development phase. An application software in an
embedded system should automatically behave appropriately
according to current environment because not all possible
patterns can be accounted for in the design phase. Self-
adaptive software can change its behavior depending on the
runtime circumstances. In this paper, we propose self-adaptive
behavior in accordance with the power consumption of other
software or the situation of the power supply.

To facilitate self-adaptive software development, we intro-
duce the Model-Driven Development (MDD) [2] and Soft-
ware Product Line (SPL) [3] development methodologies.
MDD uses executable and translatable models to improve
the efficiency and quality of software development. We can
verify software described with models in the early stage
of development to reduce reworking costs and increase the
quality. We also can generate final codes from the models. SPL
helps with optimizing the development of the entire software
family. Despite its name, the technique can also be applied
to other kinds of system development, such as hardware and
systems. This approach commonly employs a feature model
to determine the commonality and variability among software
groups. The variability of a feature model represents the dif-
ference among software groups, and the production efficiency
of the entire product family can be improved by designing a
combination of common and variable parts for features during
the design phase. In this paper, we propose a model-based
software development methodology for self-adaptive power
consumption. In the method, the runtime variation is identified
with a feature diagram used in SPL. State-machine diagrams
described by Executable UML [4] are linked to the feature
model. During the design phase, the developer assigns features
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Fig. 1. Overview of Related Works

to software behavior and describes different behaviors for each
variation in the state-machine diagram. The behavior can be
changed depending on the value estimated with the model-
based analysis. During runtime, the target software can change
its behavior by dynamically selecting features according to the
power consumption status. Software can be written to perform
optimally in terms of power consumption and service quality
by changing its behavior depending on the situation of the
power supply or the power consumption of other software.

The remainder of this paper is structured as follows. Section
II describes the application of the SPL approach to the devel-
opment of self-adaptive software in existing research. Section
IIT presents our proposed model and the SPL-based self-
adaptive software development method. Section IV presents
an evaluation to demonstrate the feasibility of our proposed
method. Section V concludes this paper.

II. RELATED WORKS

This section describes related works on self-adaptation
using the SPL technique. [5]

A. Dynamic adaptation with variability models

A Web service framework for dynamic adaptation of the
service configuration at runtime has been proposed in the
literature. This framework uses techniques to handle the op-
eration of Web services as features. Fig. 1 shows the overall
framework.

We can use this framework during the design phase and
runtime. In the design phase, models are generated to guide
the dynamic adaptation during the runtime. During runtime,
these models are used for adaptation. The framework of the
Model-based Reconfiguration Engine for Web Service (MoRE-
WS) is used for adaptation during the runtime. The flow of
the adaptation by MoRE-WS is described below.

1) The context model is updated according to changes
in the context that are detected by the CONTEXT
MONITOR.

2) Information from the context model is used to judge
whether or not the service level agreement (SLA) is
violated.

3) If the SLA is violated, the framework activates or de-
activates features and adapts the variable feature model
according to the adaptation rules.
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Fig. 2. Overview of proposed method

4) The framework uses the adapted feature model to read-

just the service configuration.

5) Fragments of the WS-BPEL code are added or deleted

to reflect the adjusted service configuration model.

The framework described below has problems with handling
low-level information close to hardware because it adapts
functions with a high level of abstraction. For example, the
power consumption of the device cannot be handled as context
because it is close to implementation. There are methods for
dealing with power consumption at the software level, but
there is no development methodology with a self-adaptive
performance to deal with power consumption.

B. Challenges of Related Works

The framework described below is problematic in handling
with low-level information close to hardware because this
framework realizes adaptation function with a high level of
abstraction.

For example, the power consumption of the device cannot
be handled as a context in the research because it is close to
implementation.

Further, there is a method dealing with power consumption
at the software level, but there is no development methodol-
ogy with a self-adaptive performance by dealing with power
consumption.

III. PROPOSED METHOD

In previous research, it was impossible to adjust the power
consumption because information close to implementation
could not be handled. In the proposed method, the software
self-adapts its power consumption by using the Model-Based
Energy Analysis Method.

A. Overview

An overview of the development process for our proposed
method is described below. Fig. 2 shows the overview of the
proposed method.

First, in the design phase, the developer creates a feature
model that includes variability regarding power consumption.



Next, a model of the behavior is created by using Executable
UML. We employ a state-machine diagram with variable
points to model software with various levels of power con-
sumption. Next, a Power Consumption Annotated Model is
created by adding a power information to Executable UML
model. Next, a Variation-Added model is created by associat-
ing two models: a feature model and the Power Consumption
Annotated Model. Then, this model is converted into source
code by automatic code generation based on the MDD method.
During runtime, this software operates below the required
power consumption while dynamically changing the variation
in response to the power situation.

B. Creation of Feature Model

This section describes the creation of the feature model.
The feature model expresses features representing the func-
tionality or non-functionality of the software system and the
relationship between them with a directed graph. The feature
model allows the commonality and variability of software in a
software family to be determined. We employ a feature model
to describe the dynamic variable behavior of software during
runtime.

Our method models runtime functions as features. Common
behaviors during runtime are modeled as common features,
and different behaviors depending on context are modeled
as variable features. The variable features are classified as
alternative or optional. Alternative features are selected from
a group of possible features, and optional features are or are
not selected according to the situation. The feature model
is represented by a tree structure of common and variable
components.

The software consists of common components or selected
variable components. In the feature model, a tree with no
selectivity, which is produced by selecting features at each
variable point, has all of the software components. With
the proposed method, this no-selectivity tree expresses one
variation of behavior.

C. Design of the Executable UML Model

Here, we describe the design of the Executable UML model.
The behavior model that realizes functions of the software
and model monitoring the power consumption situation are
described with Executable UML diagrams. The monitoring
model considers periodic behavior to obtain the power con-
sumption. In the behavior model, the states required for self-
adaptation are provided for each variable point. Required states
are those that transition to the selected state and that are
determined by variations in the power consumption. Informa-
tion on determining the variations are appended to the model
presented in the next section. The two models operate in
parallel asynchronously at runtime. The operation flow in the
Executable UML model is described below.

1) The software behavior is assigned to a state, and the
variation is represented as a difference in the state.
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Fig. 3. Overview of Model-Based Energy Analysis Method

2) One state is installed to handle the transition to the
selected variation in front of the group representing
variations in the state.

3) One state is installed to determine the variation by
referring to the power consumption status in front of
the state added in Step 2.

4) The state-machine diagram is described as a model to
monitor periodic behavior.

5) The behavior model is verified as to whether it is
operating correctly.

D. Power Consumption Annotated ExecutableUML Model

Here, we describe the Power Consumption Annotated Ex-
ecutable UML model, which appends the estimated power
consumption from the Model-Based Energy Analysis Method
[6].

This method can estimate the energy consumption in a par-
ticular state by using Executable UML. The energy consump-
tion of each state is estimated from the resource consumption
model and power consumption model. In the design phase,
this method can estimate the energy consumption at the state
level; therefore, it can bottleneck the power consumption. It is
possible to estimate the energy consumption with an average
estimation error of 9.0% with this method. Fig. 3 shows an
overview of the Model-Based Energy Analysis Method. This
method is used to estimate the power consumption of each
variation in behavior at the modeling stage. The estimated
value is appended to the Executable UML model to be used
as a reference for changing behavior. This is defined as the
Power Consumption Annotated Executable UML model.

E. Association of Features and States

This section describes the association of features and states.
In this method, the created feature model is associated with
the Power Consumption Annotated Executable UML model to
generate a new Executable UML model.

Features and states are associated by a state-transition
diagram with variable points. This diagram represents the
presence or absence of a state transition as variability in the
guard condition. The presence or absence is changed by the
activation or deactivation of features. In the feature model, a
tree representing one variation can be obtained by selecting
a single feature at each variable point. In the state-transition
diagram with variable points, only transitions depending on the
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selected feature is enabled because other transitions are limited
by the guard conditions. Therefore, in the state-transition
diagram with variations, only transitions to a certain variation
can be carried out. As a result, a state-transition diagram that
enables transition depending only on the selected features is
generated. Each feature is associated with a state because the
feature tree and state-transition diagram have a one-to-one
correspondence. The generated model is defined as a Variation-
Added Executable UML model.

F. Runtime behavior

This section describes the runtime behavior of the target
software developed by proposed method. The software modi-
fies its own behavior while acquiring the power consumption
status of the device. The runtime behavior is changed based
on information estimated in advance. Variations that operate
at the maximum performance below the maximum required
power consumption during runtime are selected. Fig. 4 shows
the behavior changes during runtime.

Fig. 4 shows that variation B has a higher power con-
sumption and higher performance than variation A. There is a
tradeoff between the power consumption and performance for
variations A and B. The device running variation A changes its
behavior to B if the latter is determined to cause no problem to
the reference power status. The software reduces its maximum
power consumption by changing to variation A when running
variation B is determined to cause problems because of the
increased power consumption of other software.

G. Obtaining the Power Consumption during Runtime and
Changing the Variation

To change the behavior during runtime, the power con-
sumption during execution needs to be obtained, and the
variation needs to be changed. A mechanism for implement-
ing Executable UML models needs to be installed during
the design phase. This section describes how to obtain the
power consumption during execution and how to change the
variation.

The behavior of obtaining the power situation is described
by the monitoring state-machine diagram and is periodically
performed. The runtime power situation can be obtained by
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TABLE 1
EVALUATION ENVIRONMENT

Equipment name

Raspberry Pi Model B+

Agilent 34411A 61/2 Digit Multimeter
HEWLETT PACKARD 3616A

DC POWER SUPPLY

Grove Pi+

Grove - Temperature Sensor v1.2

Equipment type
Device
Ammeter
Power supply

Add-in board
Sensor module

applying the Model-Based Energy Analysis Method to the
resource consumption during a one-time execution.

The variation is changed at each variable point. The vari-
ation is determined by a function that refers to the latest
power consumption situation. The decision function selects
a variation that generates the maximum performance without
exceeding the maximum required power consumption accord-
ing to the power consumption status. Fig. 5 shows the state-
machine diagram for changing variations and obtaining the
power situation.

IV. EVALUATION

In this section, we describe the evaluation of the target soft-
ware. BridgePoint was used to develop the evaluated software;
this is an Executable UML modeling tool. The expression
(1) was used as the power consumption model to create the
evaluated software. After the data for the changing power
consumption were obtained by the stepwise program, each
parameter of the power consumption model was determined
by the least squares method.

Power(A) = 0.279 + 0.0007 x CPU (%)

1
+0.0071 x Wi-Fi(M B/sec) M

A. Evaluation environment

Table I presents the evaluation environment. A Raspberry Pi
was connected to the power supply and ammeter. The sensor
module was connected to Grove Pi+ s analog device connected
to the Raspberry Pi.

In this experiment, BridgePoint [7] was used to model the
evaluated software. BridgePoint is a tool that incorporates the
methodology of Executable UML. The model can be verified



TABLE II
EVALUATION ITEM

Contents

Time until the variation change from the power
situation change

The number of times of variation changes that do
not meet the power situation per second

Time of changes to the right variation from the
occurrence of errors

Time ratio of the correct variation

The relative error rate of the power estimation
Power consumption increase rate by having a self-
adaptive

Item
Response Time

Error Rate
Correction Time
Adaptive Rate

Estimation Error
Overhead

in the modeling stage. This tool can automatically generate
code from a model and has been used in MDD.

In BridgePoint, a state-machine diagram is described as
class diagrams with conditions by the Executable UML
methodology. State-machine diagrams can describe behavior
in a state in detail with an Action Language. An Action
Language has a high degree of abstraction. It does not depend
on the type of generated source code. The model can be
connected to an external code by using a Bridge and Function.
We adopted BridgePoint as a development tool because it can
perform the complete MDD with an Action Language, Bridge,
and Function.

B. Evaluation Items

The evaluation items for this evaluation experiment are
described here. The target software required higher accuracy
and faster adaptation. In addition, the power consumption
of the software would be increased by the addition of self-
adaptation. Based on these conditions, we evaluated six items,
as presented in Table II.

C. Evaluation Procedures

The evaluation procedures for experiments 1 and 2 are
described below.

1) Experimentl: The evaluation procedure of experiment 1
is presented below. The power consumption was measured by
connecting an ammeter to the Raspberry Pi, and the execution
time when the variation was changed was recorded.

1) The evaluated software was run while a test program
that changes the CPU utilization was run.

2) The current values at runtime were recorded, and values
and variations were estimated.

3) The time when the variation change should occur was
calculated and compared with the recorded time in order
to evaluate evaluation items 1-4.

4) The estimation error was estimated by comparing the
measured and estimated values.

2) Experiment2: The evaluation procedure of experiment 2
is presented below. The software generated in experiment 1
was used.

1) The software was run without the self-adaptive function,
and the current values were measured.

| Sensing software |

| Temperature sensor |

| Sensing interval |

1s period H 3s period H 5s period

Fig. 6. Feature diagram
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2) The software was run with the self-adaptive function,
and the current values were measured.

3) The two measured current values were compared to
evaluate the rate of increase in the power consumption.

D. Software

In experiment 1, two software programs were used: the
evaluated software and test program. The specifications of each
software are described below.

1) Evaluated Software: The evaluated software used a tem-
perature sensor for sensing. It treated the power consumption
of Raspberry Pi as the context and the sensing intervals as
variations in the adaptation. This software had three types of
sensing intervals as variations. Fig. 6 shows the feature model
of the evaluated software.

2) Test Program: The test program changed the CPU
utilization to adjust the power situation of the device treated by
the evaluated software as context. This software was executed
in 2 s and had three stages of power consumption because
the evaluated software had three variations. Fig. 7 shows the
power consumption when the test program was run alone.

E. Evaluation Result

Table III presents the evaluation result. The response time in
the experiments was 0.22 s on average. There were 11 errors
when the test program was executed for 80 s, and the correc-
tion time for each error was 0.20 s on average. The adaptive
rate was 87.6% with respect to the power consumption. The
relative error of the power consumption estimation was 1.52%
on average. Fig. 8 compares the measured and estimated power



TABLE III
EVALUATION RESULT
Item Result
Response Time(sec) 0.22
Error Rate(times/sec) 0.14
Correction Time(sec) 0.20
Adaptative Rate(%) 87.6
Estimation Error(%) 1.52
Overhead(%) 2.12
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consumption. We evaluated the overhead of self-adaptability.
The increased rate of power consumption was 2.12% com-
pared to the software without the self-adaptive function. Fig.
9 shows the evaluation results for the overhead. The adaptive
rate was 87.6%, which is acceptable. The overhead due to the
addition of the self-adaptability was 2.12%, which is in the
allowed range.

V. CONCLUSION

An embedded system must reduce its power consumption
to meet requirements associated with hardware limitations
during the runtime. However, there is a tradeoff between
the power consumption and quality of service. In software
development, both must be optimized. We used self-adaptive
software to meet this tradeoff. Self-adaptive software can
change its behavior depending on the behavior of the sur-
roundings. However, existing model-based methods cannot
handle the information from self-adaptive software or use it to
adjust the power consumption of the device. This is because
information about power consumption cannot be handled at
upstream stages like modeling. In this study, we developed
software to handle the information about power consumption
in the modeling stage and proposed a model-based method to

develop self-adaptive software for power consumption. This
method uses the SPL technique and incorporates the feature
model into the UML model. By determining the behavior of
the software by activating and deactivating alternative features,
it is possible to realize self-adapting power consumption of a
device during runtime.

With the proposed method, both the power consumption and
quality of service are optimized. We developed software based
on the proposed method by using BridgePoint and evaluated it
by running it concurrently with a test program. In the results,
the average response time was 0.22 s, the adaptive rate was
87.6%, and the estimated error was 1.52%. The overhead due
to the addition of self-adaptability was 2.12%.

For future works, the following can be considered:

« Evaluation of software with multiple variable points.

o Optimization of the tradeoff between power consumption
and performance.

o Association between optional features and the UML
model.
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