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Abstract—Sensor localization is one of the big problems when
building large scale indoor sensor networks because GPS (Global
Positioning System) is unavailable in indoor environments. We
are developing a sensor localization system using WiFi APs as
anchors, which requires no anchor deployment. Because sensor
nodes cannot demodulate WiFi signals, we have developed a
cross-technology RSS (received signal strength) measurement
scheme with an AP recognition scheme [1,2].

In this paper, we present WiChest, a WiFi-AP operating
channel estimation scheme to accurately measure AP-RSS on
sensor nodes. A WiFi channel overlaps with four ZigBee channels.
AP-RSS depends on a ZigBee channel in which a sensor node
measures the RSS. Using WiChest, a sensor node automatically
switches its channel based on an estimated AP channel prior to
RSS measurement. We implemented WiChest using a MICAz
sensor node. The experimental evaluations reveal that WiChest
accurately estimates AP operating channels with an F-measure
of 0.80.

Index Terms—WiFi-AP anchors, sensor localization, operating
channel, cross-technology signal detection.

I. INTRODUCTION

Sensor network is gaining its importance due to its low-
cost and low-power features in the fields of M2M (Machine-
to-Machine) communications, IoT (Internet of Things), and
CPS (Cyber Physical Systems). In sensor networks, sensor
location is important information used for recognizing sensing
area, target tracking, and network building. Large scale indoor
sensor networks face a sensor localization problem; we need
to localize a huge number of sensor nodes by hand because
GPS (Global Positioning System) is unavailable in indoor
environments.

To address the sensor localization problem, previous studies
have reported sensor localization systems [3-5]. Although
these studies have successfully reduced deployment costs [6—
15] or improved accuracy [16-22], they require user coopera-
tion or anchor nodes whose location is manually measured.

We are developing an indoor sensor localization system
using WiFi APs as anchors, which requires neither user coop-
eration nor anchor deployment. Figure 1 depicts an overview
of the sensor localization system using WiFi APs as anchors.
WiFi APs are largely installed in many indoor environments
and their locations are managed by a network system man-
ager. We send specific signals from multiple WiFi APs and
measure RSS (received signal strength) of the AP signals on
sensor nodes. Sensor location is calculated from the RSS of
multiple APs using an RSS-based localization scheme such as
multilateration.
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Fig. 1. Overview of a sensor localization system using WiFi APs as anchors

In our previous papers, we have reported a WiFi AP-
RSS measurement scheme [1] as well as an AP recognition
scheme [2] using sensor nodes. Sensor nodes are equipped
with ZigBee (IEEE 802.15.4) modules and cannot demodu-
late WiFi (IEEE 802.11) signals. We therefore developed a
cross-technology signal extraction scheme. We experimentally
demonstrated that our AP-RSS measurement scheme success-
fully measured AP-RSS with an average error of 1.26 dB and
an AP recognition error less than 10 %.

However, AP-RSS measured on a sensor node is affected
by a WiFi-AP operating channel and the sensor node obser-
vation channel. Each WiFi channel overlaps with four ZigBee
channels. Sensor nodes observe different RSS of an identical
WiFi signal in different ZigBee channels.

To accurately measure AP-RSS on sensor nodes, this paper
presents WiChest, a WiFi-AP operating channel estimator. The
WiChest is based on an observation that WiFi signals are
detected by sensor nodes in four ZigBee channels that depend
on the WiFi operating channel. We detect WiFi-AP signals
in multiple ZigBee channels and estimate the WiFi operating
channel based on the ZigBee channels where AP signals are
detected. Many WiFi APs automatically select their operating
channels to reduce communication errors. Using WiChest,
sensor node can automatically switch its ZigBee channels
prior to RSS measurement. We implemented and evaluated
WiChest using a MICAz sensor node to demonstrate the basic
performance.

Specifically, our main contributions are twofold:

« We present the design of WiChest, a WiFi-AP operating

channel estimator for sensor nodes employing ZigBee
(IEEE 802.15.4) modules. To the best of our knowledge,
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this is a first attempt to estimate a WiFi operating channel
using sensor nodes employing ZigBee modules.

« We show basic performance of the WiChest by experi-
mental evaluations using an actual sensor node and WiFi
APs.

The remainder of this paper is organized as follows. Sec-
tion II briefly describes related works and Section III presents
the design of WiChest. In Section IV, we conduct experimental
evaluations to show the basic performance of the WiChest.
Finally, Section V concludes the paper.

II. RELATED WORKS

To the best of our knowledge, WiFi operating channel
estimation on sensor nodes is novel in the field of sensor
networks. In this section, we look through related works on
indoor sensor localization and WiFi signal detection using
sensor nodes.

A. Indoor Sensor Localization

In the field of indoor localization, previous studies have pri-
marily investigated reduction in deployment costs or accuracy
improvement. Most of these works are using WiFi devices,
which still can be applied to sensor nodes employing ZigBee
modules.

Iterative multilateration [6, 7] uses localized nodes as new
anchor nodes, which reduces the number of initial anchor
nodes. However, many initial anchors are still required to
achieve small localization error in large scale sensor networks.
Crowdsourcing combined with fingerprinting localization [8—
15] is another approach that reduces deployment costs. For a
sensor localization system, it is difficult to get user cooperation
because almost all users are carrying no ZigBee devices.

Our paper does not aim to improve accuracy because
existing localization algorithms can be easily employed to
our localization system. Previous works on accuracy improve-
ment [16-22] is therefore useful for our goal, i.e., sensor
localization using WiFi APs.

There is a new fingerprinting localization named ZiFind that
requires no anchor nodes [23]. ZiFind, however, requires many
WiFi devices called ZiFind mappers instead of anchor nodes.

B. WiFi Signal Detection using Sensor Nodes

We categorize WiFi signal detection schemes using sensor
nodes into two groups by a research objective: for cross-
technology interference avoidance and for cross-technology
communication.

For cross-technology interference avoidance, ZiFi enables
sensor nodes to detect WiFi-AP signals [24]. WiFi APs are
periodically sending beacon signals in their operating chan-
nels. Sensor nodes detect the periodic beacon signals using
a simple signal processing technique. Although ZiFi enables
sensor nodes to detect WiFi APs, the AP operating channels
are unknown. TIIM provides a machine learning classifier to
determine cross-technology interference sources [25]. ZigBee
network chooses the best coexistence mitigation strategy that
depends on an interference pattern. TIIM provides no method
to estimate an operating frequency of the interference source
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Fig. 2. WiFi and ZigBee channels

because the operating frequency has no effect on the choice
of the strategy.

For cross-technology communication, Esense provides com-
munication based on WiFi frame length, which can be mea-
sured on sensor nodes [26,27]. To distinguish WiFi signals
from WiFi devices out of the Esense system, Esense sta-
tistically analyzes WiFi frame lengths and uses rarely used
signal length. FreeBee is a kind of PPM (pulse position
modulation) using beacon signals [28]. Beacons are shifted by
specific amounts to encode data bits. These studies have no
considerations on transmission and reception channels, which
implies MAC (medium access control) protocols that control
the channels.

III. DESIGN OF WICHEST

A. Key Ildea

Our key idea is to detect WiFi-AP signals in multiple
ZigBee channels. Figure 2 shows WiFi and ZigBee channels.
As shown in Fig. 2, a WiFi channel overlaps with four spe-
cific ZigBee channels. We can estimate a WiFi-AP operating
channel based on ZigBee channels where the AP signals are
detected. There are many WiFi APs in practical environments.
We group WiFi-AP signals by sender APs and then estimate
the channel of the each AP.

B. Design Overview

Figure 3 depicts an overview of WiChest, a WiFi-AP
operating channel estimator. The WiChest consists of three
blocks: a multi-channel AP detector, AP signal splitter, and
channel estimator. The multi-channel AP detector detects APs
in multiple ZigBee channels using a sensor node. For the
each detected AP, the sensor node records AP information:
ZigBee channel number where the AP is detected, AP-RSS
(received signal strength), and beacon index that carries beacon
timing information. The AP signal splitter analyzes the AP
information to group the AP information by sender APs. The
grouped AP information is then processed by the channel
estimator to estimator an AP operating channel.

Following subsections present design details of the each
block.
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Fig. 4. Overview of multi-channel AP signal detection. a) A sensor node
samples RSS and periodically switches its observation channel, and b) convert
the RSS samples into channel-usage samples. ¢) The sensor node groups RSS
samples by channels and folds the channel-usage samples on beacon period,
deriving channel-usage matrices. For each channel-usage matrix, d) the sensor
node calculates the sum for each column to get channel-usage sums. Periodic
beacon signals appear in a column, which results in large channel-usage sum.

C. Multi-Channel AP Detector

Figure 4 depicts an overview of multi-channel AP detection.
To detect AP signals on a sensor node, the sensor node peri-
odically samples RSS. Note that all ZigBee (IEEE 802.15.4)
modules have an RSS measurement function as an energy
detection function defined in the standard [29]. The sensor
node can detect WiFi signals because both WiFi and ZigBee
are using the same 2.4-GHz band.

The sensor node changes its observation channel after a
specific number of samples are collected. Channel switch takes
some time to restart radio circuits. We embed channel switch
signals instead of RSS samples during the channel switch
period. Because ZigBee modules provide average RSS over
128 microseconds, which is defined in the standard, we set an
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Fig. 5. Example of AP signals mapped in (ZigBee channel)—(beacon index)
feature space

RSS sampling period to 128 microseconds not to miss WiFi
signals while minimizing the sampling rate.

The collected RSS samples are converted into channel-usage
samples: 0 for clear and 1 for busy. We use a threshold
of —77dBm for channel-usage determination, which follows
after the default threshold of a CC2420 IEEE 802.15.4 module
for clear channel assessment [30].

The channel-usage samples are grouped by observation
channels and are folded on the AP beacon period, resulting
in channel-usage matrices. To preserve beacon timing infor-
mation, a part of the each matrix might be missing, as shown in
Fig. 4. We calculate the sum for each column in each channel-
usage matrix. These sums are named channel-usage sums.

We can detect AP signals in each ZigBee channel by finding
a column whose channel-usage sum is above a threshold.
AP beacon signals whose interval matches to the folding
period appear in a specific column. Large channel-usage sum
therefore indicates that there are beacon signals whose interval
matches to the folding period. Referring to our previous
paper [2], we set the threshold of channel-usage sum to 80 %
of the number of foldings.

AP-RSS is calculated by averaging RSS samples of the
detected AP signal. RSS samples corresponding to the AP-
signal columns in a channel-usage matrix are extracted and
averaged. Note that we employ a simple edge filter to reduce
the RSS measurement error [1].

In practical environments, we can observe multiple APs in a
ZigBee channel. We utilize beacon index and recognize signals
from an identical AP in an AP signal splitter. Beacon index is
a column index number in a channel-usage matrix where AP
signals are detected. Periodic AP beacon signals are observed
in an identical column in a channel-usage matrix in different
ZigBee channels. AP signals from an identical AP therefore
have an identical beacon index.

D. AP Signal Splitter

The AP signal splitter applies a clustering method in a two-
dimensional feature space, i.e., a (ZigBee channel)—(beacon
index) space, to group AP information by sender APs. We
don’t limit the clustering method to apply. Clustering methods
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Fig. 6. Example of AP signal grouping using mean-shift clustering (scale
factor v = 0.20). Points are AP signals mapped in a feature space. Circles
are centers of clusters in mean-shift and the color represents each group.

that require no input of number of clusters are recommended
because the number of APs around a sensor node is unknown.

Figure 5 shows an example of AP signals mapped in the
feature space. Figure 5 shows 20 APs detected by the multi-
channel AP detection scheme presented in the previous sub-
section. We can observe that signals from an identical AP are
represented by four points in a row. Signals from an identical
AP are detected in four successive ZigBee channels and have
the same beacon index. Note that some APs are represented
by less than four points because AP signals sometimes cannot
be detected in some ZigBee channels due to noise and other
WiFi device signals.

To ensure the effectiveness of our signal splitting scheme,
we use mean-shift clustering as an example. Mean-shift does
not require the number of clusters but requires a radius, or a
bandwidth, for clustering. The radius is determined based on
two considerations below:

o Signals from an AP can be observed in four successive
ZigBee channels. The distance between signals from
an identical AP is at most three in a ZigBee channel
dimension.

e Beacon index is suffered from jitter due to an asyn-
chronous operation of APs and sensor nodes. Crystal
oscillators in WiFi and ZigBee modules have a frequency
deviation of approximately £100 ppm. A multi-channel
AP detection requires approximately three seconds for
sampling RSS in each ZigBee channel [2]. The frequency
deviation therefore results in jitter of 1.2 milliseconds,
which equals to £9.4 RSS-sample length, for a four-
channel observation.

The required radius is different in ZigBee channel and
beacon index dimensions. We therefore scale the feature space
in a beacon index dimension with a scale factor v and use a
radius of 3.0.

Figure 6 shows a successful example of AP signal grouping
using mean-shift clustering with the scale factor v = 0.20.
AP signals were detected in the environment where eight
WiFi APs were available. Points in the figure are AP signals.
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Fig. 7. Possible combinations of ZigBee channels where AP signals are
detected. (a) Detected in four successive channels, (b) missing in a second or
third channel, and (c) missing in a first or last channel.

Circles are cluster centers and the color represents each group.
Although two APs have almost same beacon index around 830,
the AP signals successfully grouped into two APs.

E. Channel Estimator

The channel estimator estimates WiFi-AP operating chan-
nels based on ZigBee channels where AP signals are detected.
AP signals could be detected in four successive ZigBee
channels. In practical environments, however, sensor nodes
might not detect AP signals in some channels due to noise and
other WiFi signals. We designed a simple channel estimation
algorithm that can be used when AP signals are detected in
three or four ZigBee channels.

Figure 7 depicts possible combinations of the three or four
ZigBee channels where AP signals are detected. AP signals
are mostly detected in (a) four successive channels. But AP
signals are sometimes missing (b) in a second or third channel,
or (c) in a first or last channel.

The channel estimator checks if the ZigBee channels where
AP signals are detected are four successive channels. Using
the four successive channel numbers, we can easily estimate
the AP operating channel referring to Fig. 2. If AP signals
are detected in three ZigBee channels, the channel estimator
determines a channel where AP signals are missing. The
estimator then virtually detects AP signals in the missing
channel to estimate the AP channel. Let ¢, ¢s +1, ¢s+ 2, and
cs+3 are the channels where AP signals are really or virtually
detected. WiFi-AP operating channel c,, can be estimated as

Cw = cs — 10. (D

IV. EVALUATION

To evaluate channel estimation accuracy of WiChest, we
conducted experimental evaluations in our laboratory using an
actual sensor node and WiFi APs.

A. Experiment Setup

Figure 8 shows an experiment setup. We used WNDR4300
WiFi APs from Netgear running OpenWrt and a MICAz sensor
node from Crossbow that employs a CC2420 IEEE 802.15.4
module. A data processing laptop was MacBook Pro running



Fig. 8. Experiment setup

Mac OSX 10.11. WiChest channel estimation process was im-
plemented as a Python program running on the data processing
laptop.

The sensor node and eight WiFi APs were installed on a
desk separated by approximately one meter. The sensor node
certainly detects the AP signals in such short distance. The
channels of the APs were randomly chosen from 1 to 11.
The sensor node periodically switched its ZigBee channel
from 11 to 26 while sampling RSS (received signal strength)
in each channel. The RSS samples were collected for four
seconds in each ZigBee channel. The length of RSS samples
is determined based on memory limitation on a MICAz sensor
node. There were 20 WiFi APs other than our eight APs
in our laboratory. Beacon intervals of the eight APs were
configured to 109 TU to safely distinguish the eight APs from
other APs. Scale factor  of beacon index, which is presented
in Section III-D, was changed from 0.05 to 0.5. We repeated
the channel estimation for 500 trials.

We compared the estimated channel numbers with actual
channel numbers of the APs and evaluated the numbers of true
positives (TPs), false negatives (FNs), false positives (FPs),
and true negatives (TNs). TP, FN, FP, and TN are defined as
the case that an AP channel was correctly estimated, no AP
was detected in a channel where AP was available, an AP
was detected in a channel where no AP was available, and
no AP was detected in a channel where no AP was available,
respectively. The number of unused channels in each trial was
used to evaluate TNs.

Using the numbers of TPs, FNs, FPs, and TNs, we calcu-
lated accuracy, precision, recall, and F-measure defined as:

A B TP + TN @)
Y T TP L FP + FN 4+ TN

TP

Precision = TP - FP’ 3)
TP

Recall = m, (4)

2 - Precision - Recall
Fmeasure = . . (5)

Precision + Recall
B. Experiment Result

Figure 9 shows the number of true positives (TPs), false
negatives (FNs), false positives (FPs), and true negatives (TNs)
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as a function of a scale factor v of beacon index. Figure 9
indicates the following:

1) Increase in the scale factor v increased the number of
TPs when v < 0.20 and the number of TPs became
maximum at v = 0.20. When v > 0.20, increase in y
resulted in decrease in the number of TPs. The scale
factor v defines allowable separation in a beacon index
dimension in an AP signal grouping. The scale factor
v = 0.20 is equivalent to a mean-shift radius of 15 in a
beacon index dimension. Jitter due to an asynchronous
operation of a sensor node and APs was almost same as
we expected in Section III-D.

2) The numbers of TPs and FNs were symmetric about a
line parallel to the x-axis. The sum of the numbers of
TPs and FNs was constant at 4,000 because we used
eight APs and repeated experiment for 500 trials.

3) The numbers of FPs and TNs were almost independent
of the scale factor . The scale factor ~ relates to the
performance of AP signal grouping. We can guess that
FPs and TNs mainly occurred in AP signal detection
and AP channel estimation.

We next calculated accuracy, precision, recall, and F-



measure. Figure 10 shows accuracy, precision, recall, and F-
measure as a function of the scale factor . Figure 10 indicates
the following:

1) Accuracy, recall, and F-measure exhibited similar curves
as a function of the scale factor +. These curves are also
similar to a TP curve in Fig. 9. The numbers of FPs
and TNs were almost constant as y varies. The numbers
of TPs and FNs were dominant factors in variations of
accuracy, recall, and F-measure.

2) Accuracy, recall, and F-measure were maximum at the
scale factor v = 0.20. The maximum values of accu-
racy, recall, and F-measure were 0.78, 0.72, and 0.80,
respectively. Accuracy, precision, recall, and F-measure
were almost constant near the maximum point. We can
easily adjust the scale factor ~y to get the near-maximum
performance.

3) Precision was almost independent of the scale factor .
This is because the number of FPs was small compared
to the number of TPs. The average precision was 0.90.

The above results confirm that the WiChest accurately
estimated AP operating channels with an F-measure of 0.80.

V. CONCLUSION

This paper presents WiChest, a WiFi-AP channel estimator
working on sensor nodes. WiChest is based on an observation
that WiFi signals are detected in four successive ZigBee chan-
nels. A sensor node detects AP signals in multiple channels
using a cross-technology signal extraction scheme. The AP
signals are then grouped by sender APs using mean-shift
clustering. Checking channel numbers where the AP signals
are detected, we can easily estimate AP operating channels.
We implemented WiChest using a MICAz sensor node and
evaluated the basic performance using actual WiFi APs. Ex-
perimental evaluations demonstrated that WiChest accurately
estimated AP channels with an F-measure of 0.80.
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