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Abstract As society becomes increasingly interconnected, the need for sophisticated signal processing and data

analysis techniques becomes increasingly apparent, particularly in the field of Intelligent Transportation Systems

(ITS) where various sensing applications generate data at an exponential rate. In this paper, we put a forward a

compressive sensing-based system to extract information from passing vehicle sounds sampled at sub-Nyquist rates

for Acoustic Vehicle Detection and Identification (AVDI) applications. The obtained compressive measurements are

used to detect and identify passing vehicles. Initial evaluation is performed using data obtained from roads on a

university campus and with a back-end ADC sample rate of 3 kHz.
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1. Introduction

The past years have seen a marked increase in the de-

velopment of Intelligent Transportation System (ITS) tech-

nologies. A growing number of novel applications such as

smart navigation, traffic monitoring, and road safety have

been accompanied by a corresponding improvement in over-

all system performance and efficiency.

However, with this increase in performance comes an in-

crease in computational cost and complexity, requiring more

data and processing power than even before. This is partic-

ularly apparent in traffic monitoring applications, where the

methods used in the detection and identification of vehicles

often come with high computational and installation costs.

In an effort to mitigate this, low-cost, low-complexity vehi-

cle detection systems based on acoustic sensors have been

proposed.

Most recently, the authors have presented a stereo

microphone-based vehicle detection and identification in [1].

Despite the low installation costs associated with acoustic

sensing, the subsequent analysis and leveraging of the ac-

quired data is often costly in terms of computational com-

plexity, reducing the overall efficiency of the sensing system.

Our aim is to find a way to reduce the amount of data

involved at every stage of ITS sensing systems. We are seek-

ing to lower the overall computational cost, complexity, and

power consumption when compared to existing setups whilst

maintaining high classification accuracy.

To achieve this goal, we make use of a technique called

compressive sensing (CS). First presented in [2], CS is a tech-

nique that enables the reconstruction of sparse or compress-

ible signals from a reduced set of linear, non-adaptive mea-

surements.

In this paper, we propose a system that takes advantage

of the dimensionality reduction properties of CS to acquire

vehicle signals at sub-Nyquist sample rates and uses them in

conjunction with a range of machine learning techniques for

particular use in Acoustic Vehicle Detection and Identifica-

tion (AVDI) applications.

2. Related Work

Vehicle detection and identification using features ex-

tracted from vehicle audio in tandem with supervised learn-

ing has been widely explored. Methods using Support Vec-

tor Machine (SVM) classifiers [3], k-Nearest Neighbor (KNN)

classifiers [4], Gaussian Mixture Models, and Hidden Markov

Models [5] used with the frequency domain information of

vehicle signals have been proposed. Whilst these systems

share a similar goal and basic approach, they differ in their

applications, performance and features.

A method for identifying passing vehicles based on the

shape of the frequency-domain representation of their sound

signature has been proposed in [6]. Instead of using the sig-

nal’s individual frequency components as features, the pro-

posed system uses information obtained from the frequency

domain envelope itself. The unique shape of each passing ve-
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hicle’s frequency envelope enables the system to accurately

distinguish individual vehicles from one another. However,

this same uniqueness makes it impossible for the system to

identify the type (i.e. the class label) of a passing vehicle.

In [7], a system capable of analyzing the acoustic signa-

ture of vehicles independently of any changes in engine speed

is presented. By using wavelet packet analysis instead of

more traditional time or frequency domain-based techniques

and a Multilayer Perceptron (MLP) classifier, the system

is able to extract engine speed-independent features from

sounds emitted by passing vehicles. This improves system

accuracy performance in a range of sensing environments,

however the the computational and hardware requirements

entailed by the use of a neural network makes it difficult to

deploy the system in low-power low-cost situations.

The authors have, in previous works, proposed several

acoustic vehicle detection systems. SAVeD, the sequential

acoustic vehicle detector put forward in [8] works by fitting S-

curve models to points on a sound map using a random sam-

ple consensus (RANSAC) estimation method. Once a vehicle

is successfully detected, the sound map is purged of the cor-

responding points, and the detection process is repeated to

detect subsequent vehicles. The system F-measure is 83%.

In [1], the authors designed a stereo microphone-based de-

tection system, which identifies passing vehicles based on

frequency-domain features extracted from their sound sig-

nature. By time-shifting and combining the two signals to

produce an emphasized sound signal, vehicle type estima-

tion accuracy is improved, particularly when faced with si-

multaneously and successively passing vehicles. The system

accuracy is 95%. Whilst both the above systems perform

well when compared to existing microphone-based detection

methods, the computational cost associated with the two

methods is high and makes low-power, embedded applica-

tions of these systems difficult.

The authors also propose in [9] an ultra low-power vehi-

cle detector (ULP-VD) capable of detecting passing vehicles

with minimal computation cost. This system however is only

able to detect the presence of a vehicle and must be used in

conjunction with other techniques to identify them.

Traditionally, digital signal processing techniques are

performed on a full set of samples acquired by sampling an

analog signal at the Nyquist rate. In [10] the concept of us-

ing compressive sensing as a tool for signal processing on

samples acquired at sub-Nyquist sample rates is explored.

The authors find that it is possible to succesfully perform a

variety of processes including filtering, detection and classi-

fication directly on a reduced set of linear samples, without

reconstructing the signal beforehand.

In [11], it is shown that it is viable to use the linear mea-

surements as features in machine learning with only mini-

mal pre-processing; by carefully selecting the sensing matrix

parameters, the authors demonstrate that it is possible to

obtain enough relevant signal information to detect faulty

solenoids.

The authors in [12] put forward a license plate recogni-

tion system which uses an SVM to identify the numbers on

the plate by sub-sampling the sparse, flattened 1-D represen-

tations of images obtained from traffic monitoring cameras.

The above methods serve to illustrate the viability of

using a CS measurement-based sensing system for audio sig-

nals.

3. Proposal

The aim of the proposed research is to design a su-

pervised learning-based sensing system utilizing CS-based

techniques. We are seeking to improve upon existing AVDI

methods by exploiting the compressible nature of the signals

under consideration to sample them at sub-Nyquist rates,

thus reducing the amount of data and computational com-

plexity involved at each successive stage of the detection and

identification process.

Current AVDI systems contain, more often than not,

a stage presenting relatively high computational complexity.

This occurs either prior to the initial detection or classifica-

tion stage like in [1] or [13] where the use of successive DWTs

or DFTs are used to analyze and process the data, or dur-

ing the classification stage itself where complex supervised

learning methods such as deep neural networks (DNN) [14]

or MLPs [7] are employed. In either case, this computational

cost associated with these stages somewhat mitigates the sav-

ings made using acoustic sensing methods. In this paper,

we propose a CS-based AVDI system with a pre-processing

stage consisting only of successive filtering and mixing, and

that performs classification on easy-to-extract features using

a simple machine learning classifier.

To the best of our knowledge, there are no currently

existing compressive-measurement based acoustic vehicle de-

tection and identification systems.

4. Proposed System

4. 1 System Overview

Figure 1 shows the average sound signals obtained from

passing cars and scooters, and from periods without a pass-

ing vehicle: we can see that the overwhelming majority of

the frequency content is contained below 6 kHz, and that we

can distinguish the different signal classes by the power con-

tained in their respective frequency components from 3 kHz

onwards. Rather than sample the signals at the Nyquist

rate, our proposed system uses a CS-based approach to ac-
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Figure 1 Average audio signals for three vehicle classes

Figure 2 Proposed system overview

quire the information located in the 3–6 kHz frequency band

directly at sub-Nyquist rates. Passing vehicles are then de-

tected and identified using features extracted from the sam-

ples acquired in this manner. The system can be seen in

Figure 2 and is made up of three stages: filtering, random

demodulation, and classification. The filtering stage consists

of a single band-pass filter (BPF) operating over the 3–6 kHz

band and removes unwanted frequency content. The input

signal is then combined with a random chipping sequence

before being sampled at a sub-Nyquist rate in the random

demodulation stage. Finally, in the classification stage, fea-

tures are extracted from the samples obtained in the previous

stage and are used as inputs to a classifier for vehicle type

detection and identification. The workings of these stages

are explained further in sections 4. 2 and 5. 2. 2.

4. 2 Random Demodulator

The sub-Nyquist sampling performed in the random de-

modulation stage is done using a CS-based approach. CS

as a means for efficiently sampling sparse or compressible

signals (a signal can be called compressible if only a small

amount of its non-zero components have significant magni-

tude) was first put forward in [2] and [15]. The procedure can

described as follows: x ∈ RN is an input signal which can

be represented as a combination of a unitary sparsity basis

Ψ ∈ CN×N and a K-sparse coefficient vector α ∈ CN such

as x = Ψα. We define y ∈ RM as the set of linear mea-

surements obtained by performing a sequence of sampling

operations represented by Φ ∈ RM×N , such that y = Φx

and crucially, N > M (N and M are positive integers). We

define Θ ∈ CM×N as Θ = ΦΨ, and y = Θα. CS establishes

that if Θ satisfies the incoherence and RIP (restricted isom-

etry property) conditions outlined in [16], it is possible to

recover α, and thus x, from y with much fewer samples than

would be required in traditional Nyquist sampling. The re-

covery process is typically performed using l1 minimization.

The initial theoretical work on CS only considers dis-

crete signals, however our proposed system looks to obtain

continuous-time audio signals which have a sparse or com-

pressible representation in the frequency domain. To that

end, our system takes inspiration from an architecture de-

veloped by Tropp et al. in [17] called the Random Demodu-

lator (RD), which allows for analog signals to be used in CS

applications. The intuition behind the system is as follows:

instead of sampling an analog signal at the Nyquist rate, the

RD modulates the signal with a random chipping sequence,

spreading the K-sparse input signal across the entirety of

the frequency spectrum. This smeared signal is then low-

passed before being sampled at a sub-Nyquist rate, and the

original signal is obtained from these samples via a recovery

algorithm.

More formally, our analog input signal of length Ts can

be written as combination of discrete coefficients α ∈ CN

and continuous basis elements ψn(which correspond here to

the columns of the IDFT matrix) for a given time window:

x(t) =

N∑
n=1

αnψn(t) , t ∈ [0, Ts) (1)

The chipping sequence can be expressed as:

PRS(t) =

W−1∑
n=0

ϵn(t) , t ∈
[
n

W
,
n

W
+ 1

)
(2)

ϵn is a random sequence which switches between ±1 with

equal probability (Rademacher sequence) at or above f(t)’s

Nyquist rate.

The combined signal x(t).PRS(t) is passed through an

LPF h(t) and sampled at a rate R below the Nyquist rate

W with R < W to obtain linear compressive samples y[m].

In the time domain, this corresponds to a multiplication fol-

lowed by a convolution:

y[m] =

∫ ∞

−∞
x(τ)PRS(τ)h(t− τ)dτ

∣∣∣∣
t=mR

(3)

=

N∑
n=1

αn

∫ ∞

−∞
ψn(τ)PRS(τ)h(mR− τ)dτ (4)
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Figure 3 Experimental setup

From which we can obtain the expression for the sens-

ing matrix Θ, where each entry is defined as θm,n for row m

and column n.

θm,n =

∫ ∞

−∞
ψn(τ)PRS(τ)h(mR− τ)dτ (5)

The RD in our proposed system presents two major

modifications. First, the presence of the BPF operating over

the 3–6 kHz band at the RD’s input, whose role is to re-

move redundant sub-3 kHz information from the signals, im-

proving classification performance, and low-pass the signal

to 6 kHz lowering the required chipping sequence frequency

to 12 kHz. Second, the absence of a reconstruction stage:

we are not looking to reconstruct x and will instead extract

features directly from y for use in classification, reducing the

computational load of the system by bypassing the compu-

tationally expensive reconstruction phase.

It is important to note that in our proposed system

the front-end band-pass filtering (3–6 kHz) and mixing (in-

put signal with 12 kHz chipping sequence) are performed in

the analog domain, and that the sampling operation only

occurs at the end of the signal acquisition process. Thus all

pre-processing has been completed by the time the signal is

sampled by the back-end ADC.

5. Evaluation

An initial software-based evaluation of our proposed

system is performed using audio data collected from the

roads on a university campus.

5. 1 Data Acquisition

The data acquisition setup can be seen in Figure 3.

Two microphones are installed at the side of a two-lane two-

way road at a height of 1m from the ground, parallel to

the road and connected to a video camera. The microphones

record the sound of passing vehicles for a duration of 20 min-

utes and the video camera records the ground truth video

footage. The microphones used are a pair of AZDEN SGM-

990s, recording at a sample rate of 48 kHz and bit depth

of 16 bits, the video camera is a SONY HDR-MV1. The

Figure 4 System software implementation overview

intra-microphone distance is 50 cm, the distance between the

microphones and the center of the front lane is 3m, and the

distance between the microphones and the center of the back

lane is 6m. The signals received by the two microphones are

averaged in order to obtain a single-channel mono signal for

use in subsequent analysis. The setup was used to record

vehicle sounds on two separate occasions, with the one set of

data being used as a training set, and the other as a testing

set.

The first set contains 178 vehicle sounds: 57 cars, 94

scooters/motorbikes, 25 buses, and 2 trucks. The second set

contains 162 vehicle sounds: 63 cars, 76 scooters/motorbikes,

21 buses, and 2 trucks. Classification was performed for 3

classes: cars, scooters/motorbikes, and no passing vehicle;

referred to as: “Car”, “Scooter”, and “NoVeh” respectively.

During this initial evaluation, we are only looking to

perform classification on individual, non-overlapping vehicle

sounds. We call the time at which a given vehicle passes in

front of the mid-point between the two microphones as tp,

and define the range Tr =

[
tp−Ts

2
;
tp+Ts

2

]
where Ts = 2s.

By using information about the tp of each passing vehicle

obtained from the ground truth data, we are able to extract

the “Car” and “Scooter” signals whose Tr do not overlap

with that of preceding or following vehicles. In this manner

we are able to obtain 40 “Car” and 57 “Scooter” signals from

the first set, and 52 “Car” and 50 “Scooter” signals for the

second set. We obtain “NoVeh” signals by splitting the parts

of the signal who do not correspond to the Tr of any vehicle

into sections of length Ts. We obtain 115 “NoVeh” signals

for the first set and 112 for the second for a total of 212 and

214 signals across the three classes under consideration for

the first and second sets respectively.

5. 2 System Simulation

5. 2. 1 Overview

Figure 4 shows the software implementation of the sys-

tem proposed in Figure 2.

We described in section 4. 1 the real-world analog im-
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TABLE 1 System parameters.
Nyquist Rate R B Ts N K M

48 kHz 3 kHz 12 bits 2s 96000 24000 6000

Figure 5 Filtered average audio signals for three vehicle classes

plementation of the system. In this section, we perform an

initial evaluation of the system by simulating its operation

using a software-based digital-domain representation.

xi[n] ∈ RN denotes a discrete version of the analog

input signal f(t) sampled at 48 kHz. The input signal is dec-

imated (low-pass filtered and downsampled) by a factor of

4, bringing the Nyquist rate down to 12 kHz. This down-

sampled version of the signal is high-pass filtered at 3 kHz

through a Type II Chebyshev filter, and the resulting sig-

nal is referred to as x[k] ∈ RK . The chipping sequence

PRS[k] ∈ RK is a vector containing an equiprobable ran-

dom distribution of values from the set {−1.1}. The LPF

preceding the ADC is set as a 2nd order Butterworth fil-

ter and the linear measurements y[m] ∈ RM are obtained

by uniformly sampling and quantizing every N
R
th entry from

the combined x[k] ⊙ PRS[k] signal at rate R = 12kHz
4

and

bit-depth B. When compared to the initial Nyquist rate

of 48 kHz, the reduction in sampling rate, and thus in the

amount of samples from which we extract the features nec-

essary for classification is
( 48kHz

4
)

3kHz
= N

M
= 16.

The action of the successive decimation and high-pass

filtering on the frequency content of x[k] can be seen in Fig-

ure 5. The sub-3 kHz content is strongly attenuated with a

short 500MHz passband, whereas the roll off towards 6 kHz is

much less pronounced. This simultaneous filtering operation

has the effect of further sparsifying the input signal by sup-

pressing the unwanted information contained in the signals’

lower frequency range, whilst also performing anti-aliasing

by attenuating the frequencies above the signal’s Nyquist

frequency of 6 kHz. As a result, in the unattenuated 3-6 kHz

band, the frequency information of each different signal class

is clearly distinct.

Figure 6 Linear measurements of average audio signals for three

vehicle classes

Finally, we can see in Figure 6 the linear samples y[m]

and their frequency domain representations. The action of

the proposed system causes a distinct separation between the

signal classes, observable in the frequency-domain represen-

tation of the linear measurements, as well as the linear mea-

surements y[m] themselves. The different y[m] plots, present

various statistical features which are extracted for use in the

subsequent classification stage.

5. 2. 2 Feature Extraction

We perform classification on a set of features extracted

from the y[m] measurements obtained during the sampling

process. The advantages of reducing the amount of data used

in the classification process by selecting relevant features are

threefold: improved system performance due to the removal

of redundant information, mitigating the effects of overfit-

ting due to an excessive amount of features, and reducing

the system’s computational cost and complexity.

The 9 following features are selected:

• mean

• standard deviation

• median

• absolute max value

• peak-to-peak range

• interquartile range

• data percent in 1st standard deviation

• data percent between 2nd & 1st standard deviation

• data percent between 3rd & 2nd standard deviation

Prior to classification, the extracted feature data is ran-

domly undersampled to obtain classes with equal amounts of

entries.

5. 3 Classification Results

A random forest classifier is trained on the first dataset

and tested on the second, and the results are averaged over

100 runs to obtain an average system accuracy of 86.2%. In
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Figure 7 System confusion matrix

this initial evaluation, the detection and identification pro-

cesses are performed simultaneously: given an unknown sig-

nal of length Ts, our system will determine whether or not a

vehicle is passing, and the type of passing vehicle.

From the confusion matrix in Figure 7 we can see that

system was able to identify “Scooter” signals with high accu-

racy, but was less effective at identifying “Car” and “NoVeh”

signals. Looking at Figure 1 we can see that over the 3–6kHz

band the signal power of “Scooter” signals is higher than

that of the two other signals, which translates to higher am-

plitude and crucially, higher variance in the corresponding

linear samples. The nature of the differences between the

y[m] of each signal combined with the selected feature set

lead to a model that is biased towards the “Scooter” class.

6. Conclusion

This paper serves as an initial evaluation of a compres-

sive measurement-based method for the detection and iden-

tification of vehicles based on their sound signature. We de-

signed and created a software implementation of a modified

RD architecture capable of classifying different passing vehi-

cle sounds with an accuracy of 86.2% and a back-end ADC

sample rate 16 times smaller than the conventional Nyquist

rate. Future work includes the fine-tuning of the existing sys-

tem, in particular removing the bias towards the “Scooter”

class, adding additional functionality to the system, such as

a separate vehicle presence detection or a steady-state noise

reduction stage, and finally working towards a hardware im-

plementation of the system for use in ITS applications.
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