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Abstract—A key feature of Intelligent Transport Systems (ITS)
is the ability to detect and identify vehicles. In this paper,
we put forward a stereo microphone-based system capable of
detecting and identifying the type of individually, sequentially,
and simultaneously passing vehicles in multi-lane environments
based on their sound. We find that our proposed system shows
improved performance over single-microphone systems thanks to
its improved sequential and successive vehicle detection perfor-
mance. Initial evaluation results using sound data collected from
roads on a university campus show a classification accuracy of
95.01 %.

Index Terms—Acoustic Vehicle Detection, Vehicle Type Iden-
tification, Classification, RANSAC, FFT.

I. INTRODUCTION

The increasing development of information and communi-
cation technology in recent years has led to similar advances
in the field of Intelligent Transport Systems (ITS). A growing
number of ITS applications such as navigation, traffic depen-
dent guidance and auto-cruise systems have been proposed
and realized with the aim of improving road traffic safety,
efficiency, convenience, and reliability.

The detection and identification of vehicles passing on
a road is of paramount importance in a wide variety of
ITS applications, and several methods have already been put
forward for the purpose of vehicle detection. The authors
have themselves proposed a low-cost vehicle detection method
using a stereo microphone pair [1]–[3].

These proposed technologies, however, only focus on vehi-
cle detection and no consideration is given to the identification
of vehicle type. Whilst conventional sensing systems aim
for low-cost and high accuracy detection, there is a growing
demand for these detected vehicles to be identified with similar
accuracy. Current state-of-the-art systems offering such func-
tionality work by using a video camera and image detection
techniques to detect and identify passing vehicles [4], [5].

In this paper, we put forward a system capable of per-
forming vehicle detection and classification using a stereo
microphone pair. Vehicle detection is achieved using a method
proposed by the authors in [3], and classification is performed
by analyzing frequency domain information obtained from a
detected vehicle’s sound in conjunction with supervised ma-
chine learning techniques. Due to the multi-lane environment,
it is necessary to use a stereo microphone pair to detect
vehicles passing simultaneously in different lanes.

Initial evaluation using sound data collected from roads on
Kyushu University’s Ito campus show that a passing vehicle’s
type can be determined with an average accuracy of 95.01 %.

The paper is structured as follows: in Section II we explore
related research on vehicle type classification, before describ-
ing our proposed method in Section III, and finally presenting
our initial evaluation results in Section IV.

II. RELATED WORK

A. Non-Acoustic Vehicle Type Classification

Examples of non-acoustic vehicle type classification meth-
ods include Electronic Toll Collection (ETC) and camera-
based systems. In ETC-based methods, the vehicle type is
identified by the registration information contained in the ETC
onboard equipment. Whilst ETC systems enjoy widespread
use on motorways around the world, the high installation and
maintenance costs of the infrastructure make it difficult for
them to be installed on standard roads for the sole purpose of
vehicle detection and identification.

Two principal methods have been proposed for camera-
based vehicle classification. In [6] Hongliang et al. propose a
system capable of automatically detecting a vehicle’s number
plate, and thus its information from a single image using edge
statistics. This method requires the use of a high-performance
computer for analysis, and the installation of a camera in front
of the vehicle passing point to achieve high accuracy. In [7]
Avery et al. put forward a classification method using vehicle
length: by taking the background difference information from
images taken from roadside surveillance cameras, the authors
are able to obtain the passing time, and thus the length of
passing vehicles which is then used to determine vehicle type.
Whilst this method is effective for detecting long vehicles such
as trucks or buses, it is not suited for shorter ones like cars or
motorbikes. In addition, accuracy performance suffers in rainy
and foggy situations.

To the best of our knowledge, none of the above methods
have shown any additional results or progress.

B. Acoustic Vehicle Type Classification

Low-cost acoustic vehicle type classification methods have
been proposed by Aljaafreh et al. [8] and Changjun et al. [9].
Both of these methods make use of frequency domain features
in supervised learning setups using Support Vector Machine
(SVM) and k-Nearest Neighbor (k-NN) classifiers respectively.
Munich et al. also used supervised learning, namely a Gaus-
sian Mixture Model (GMM) and a Hidden Markov Model
(HMM), in conjunction with frequency domain features to
identify vehicles; a comparison of the classification accuracy
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of these techniques is shown in [10]. The results obtained help
determine the optimal machine learning algorithm and amount
of features when estimating a vehicle type from an emitted
sound.

Yang et al. have developed a method for estimating a
vehicle’s type based on the shape of its sound in the frequency
domain [11]. Rather than focusing on the individual frequency
components that make up the signal, it uses the frequency
domain envelope as the feature value: as each vehicle has
a unique frequency spectrum shape, the system is able to
accurately distinguish individual vehicles from one another.
However, the inherent uniqueness of each frequency spectrum
shape makes it impossible for the system to classify a passing
vehicle’s type (to determine its class label).

Göksu [12] has proposed a method of analyzing the acoustic
signature of vehicles independently of any changes in engine
speed. By making use of wavelet packet analysis in conjunc-
tion with a Multilayer Perceptron (MLP) classifier instead of
more traditional time or frequency domain-based techniques,
the author is able to extract features from a passing vehicle’s
sound signature, independently of its engine speed. Whilst this
affords the system greater accuracy in a variety of situations,
the use of a neural network makes it difficult to use in
low-power low-cost situations due to the computational and
hardware requirements.

Wieczorkowska et al. present a vehicle classification frame-
work using a wide variety of features extracted from the time
and frequency domain representations of vehicle sounds. The
relevancy of the extracted features is determined by combining
data obtained in live roadside recording situations with data
obtained in controlled test environments. The selected features
are then inputted to a wide selection of classifiers in order to
determine the most appropriate one for a given situation. The
results of this can be seen in [13].

A multimodal sensing framework using both video and
acoustic sensors for vehicle detection and tracking has been
presented by Chellappa et al. By using the data obtained
from a microphone to determine a vehicle’s initial direction
of approach, the system is able to roughly estimate a target
vehicle location. From this initial information, the vehicle’s
location is precisely determined and monitored using video
data. Whilst not explicitly identifying the type of each passing
vehicle, the improved performance of the system proposed
in [14] lays the groundwork for a hybrid audio-video vehicle
detection and identification sensing system.

None of the works mentioned above have considered vehicle
classification in a situation with mixed vehicle sounds. In a
real-world environment multiple vehicles could pass simul-
taneously in different lanes, or in quick succession in the
same lane in front of a microphone, resulting in mixed vehicle
sounds and reduced system accuracy.

III. DESIGN

A. Intuition

The intuition behind our proposed vehicle type classification
system is as follows: a stereo microphone pair is placed on
the side of the road to track a vehicle’s position relative to
both microphones. As the vehicle passes in front of each
microphone successively, its sound is recorded and the time
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Fig. 1. Proposed stereo microphone vehicle type classification system
overview. A passing vehicle’s sound signature is emphasized by aligning and
superimposing the signals obtained by the microphones.

difference between both microphones is calculated from which
we can obtain the direction and speed of the passing vehicle.
The passing vehicle’s sound signature is then emphasized
by aligning and superimposing the signals obtained by each
microphone.

Figure 1 shows an example of a vehicle moving from right
to left: the left channel microphone is located farther from the
vehicle than the right channel microphone. The arrival time
between the sound emanating from the vehicle and the left
microphone is larger than the arrival time between the sound
emanating from the vehicle and the right microphone. The
difference between the arrival times is �t.

By shifting the left channel sound by ��t and adding it to
the right channel sound we obtain our combined emphasized
sound. We set sL(t), sR(t), as the left and right channel audio
signals respectively and semph(t) as the emphasized signal:

semph(t) = sR(t) + sL(t+�t). (1)

The vehicle type is estimated from this emphasized signal
using supervised learning methods. Since the vehicle is as-
sumed to travel continuously along the road, �t changes with
time and is thus a function of time t:

semph(t) = sR(t) + sL [t+�t(t)] . (2)

B. System Overview

Figure 2 shows our proposed stereo microphone-based
vehicle type classification system consisting of the following
components: a sound retrieval block, a vehicle detection block,
an emphasis synthesizer block, and a vehicle type classification
block.

The sound retrieval and vehicle detection blocks listen for
sounds and analyze them to detect passing vehicles; if a
vehicle is detected, then the blocks will also acquire the
vehicle passing time and the reception time difference �t.
The detection block is designed using the SAVeD method
established in previous research [3]. Using the acquired �t,
the sound signals acquired by the left and right microphones
are superimposed in the emphasis synthesizer block to enhance
the vehicle sound in the direction of travel. Frequency domain
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feature values are extracted from this emphasized audio signal,
and the vehicle is identified using supervised learning in the
vehicle type classification block.

The workings of each block are explained in the following
sections.

C. Sound Retrieval Block

The sound retrieval block is composed of a stereo mi-
crophone pair. Figure 3 shows the experimental microphone
layout: the two microphones M1 and M2 are installed at
a distance D from each other and a distance L from the
road. Since the distances d1 and d2 from the vehicle to each
microphone change over time, so does the time delay between
a sound being emitted by a vehicle and it reaching both
microphones. This time difference is used in both the detection
and classification processes; for this purpose the audio signals
acquired by both microphones are temporarily held in ring
buffers.

D. Vehicle Detection Block

The vehicle detection block uses the audio signals stored
in the ring buffers. Using these signals, a vehicle is detected
by drawing a soundmap, which is a plot of the change in
sound arrival time difference between the two microphones
(estimated using the cross-correlation function), as a function
of time. We write the audio signals received by the two
microphones as s1(t) and s2(t), and the cross-correlation
function R(t) as:

R(t) =

Z
s1(t) s2(t+ ⌧) d⌧. (3)

If the two microphones receive a signal with a time dif-
ference of �t such as: s1(t) = s2(t + �t), then R(t)
reaches its maximum value at t = �t. As a result of this,
the time difference �t can be estimated by looking for the
peak of R(t); the actual value of �t is calculated using
GCC-PHAT (Generalized Cross-Correlation Phase Transform)
which calculates the time difference in the frequency domain.

Additionally, on Fig. 3 we can see that the difference in
reception time (or sound delay) �t between microphones
M1 and M2 is proportional to the distance between the
sound source and each microphone respectively. We set the
initial passing time of a vehicle in front of the center of the
microphones as t = t0. We thus also derive �t(t), which is a
function of time, in the following manner:

�t(t) =
d1 � d2
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where c is the speed of sound.
From Eq. (4), we can see that as a vehicle passes in front

of a microphone with a constant speed v, an S-shaped curve
is drawn on the soundmap. The vehicle detection block works
by detecting this curve using a random sample consensus
(RANSAC) robust estimation algorithm [15]. The unknown
parameters in Eq. (4) are the speed v and the initial passing
time t0; these are estimated by fitting Eq. (4) to a “high
likelihood” point cloud on the soundmap.

Figure 4 shows an example of vehicle detection using a
soundmap and RANSAC, with the blue dots indicating the
sound delay at each time t, and the orange line the result
of the RANSAC fitting process. The red points were judged
as being of “high likelihood” during the fitting process. It
should be noted that, using RANSAC, it is possible to estimate
the values v and t0 even in conditions where the points
themselves deviate significantly from the S-curve. For each
detected vehicle, the vehicle detection block outputs the speed
v and the passing time t0 to the emphasis synthesizer block.

E. Emphasis Synthesizer Block

The emphasis synthesizer block begins by calculating the
passing sound time difference �t at each time t using the
speed v and the initial passing time t0 for each vehicle detected
by the vehicle detection block. Using this information, the
emphasis synthesizer block shifts the received sound signal at
one of the microphone channels in time and adds the sounds
of both channels together, creating an emphasized sound.

If the signal obtained by the first microphone enables us
to broadly estimate the passing vehicle type, then the signal
at the second microphone gives us information about any
successively or simultaneously passing vehicles. For instance,
the presence of frequency information corresponding to a high-
amplitude signal at the second microphone would suggest a
simultaneously passing vehicle in the opposite lane, whilst
that of a lower-amplitude signal would suggest a successively
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Fig. 4. Vehicle detection using RANSAC. The blue points indicate the sound
delays at each time t, and the red points are points judged as being of “high
likelihood” during the RANSAC fitting process. The orange line is the result
of RANSAC fitting.
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Fig. 5. Emphasis synthesis. For each fixed-width window, the frequency
domain representation is derived using an FFT. The FFT’d signals on left and
right channels are aligned and added together.

passing vehicle in the same lane, or no other vehicle at all.
The emphasized signal obtained from the combination of
one of these frequency signatures at the second microphone
with the frequency signature at the first microphone gives
us information about both the passing vehicle type and any
successively or simultaneously passing vehicles.

Figure 5 shows an overview of the emphasis synthesis
process: the audio signals of the left and right channels
are subdivided into multiple fixed-width windows with the
time shift being performed in the frequency domain in order
to process each window sequentially. We obtain the time-
frequency domain representation of each individual window
by performing a Fast Fourier Transform (FFT) on each of
them sequentially, before using the speed v and the passing
time t0 obtained beforehand to calculate the appropriate value
of �t as seen in (4). Finally, one of the signals is shifted by
�t to cancel out the time difference and the two signals are
summed together.

Time shifting the signal in the frequency domain amounts
to shifting the phase of each of its frequency components.
Let s[n] be the discrete time representation of the original

signal and S[k] its frequency domain representation obtained
via DFT:

S[k] = DFT(s[n])

=
N�1X

n=0

s[n] e�j2⇡k n
N . (5)

Here, DFT( ) is the discrete Fourier transform, and N is the
amount of points used in the DFT operation (= window size).
The DFT of the signal s[n�m], which is the signal obtained
by delaying the time domain representation of the signal s[n]
by m points, can be represented as follows:

DFT(s[n�m]) =
N�1X

n=0

s[n�m] e�j2⇡k n
N

= e�j2⇡km
N S[k]. (6)

From Eq. (6), we can see that shifting the time shifts the
phase of each frequency component by �2⇡km

N .

F. Vehicle Type Classification Block

The vehicle type classification block extracts the features
used for vehicle type classification from a frequency domain
representation of the emphasized vehicle sound produced by
the emphasis synthesizer block and determines the vehicle type
using supervised learning. In this paper, we are looking to
distinguish between multiple vehicle types, and so a super-
vised learning method capable of multi-class classification is
necessary.

We use an SVM classifier due to the large number of
features for each data point. The kernel used is the linear
kernel as it offers good separability for our particular dataset
whilst being less complex and less prone to overfitting than
other kernels.

Our proposed method uses only the low-frequency compo-
nents of the emphasized audio signal as features. Figure 6
shows the frequency spectrum of the audio signal acquired
when a (a) vehicle was passing and (b) no vehicle was
passing. We can see that the majority of the frequency content
contained in a passing vehicle’s signal is located in the sub-
10 kHz band.

In order to reduce the influence of environmental noise,
a low pass filter (LPF) is applied in the time domain to
the individual frequency components prior to classification.
Looking at the horizontal axes of Fig. 6, we can see that
whilst the frequency spectrum of the actual audio signal does
not change significantly in the short period of several hundred
milliseconds, there are changes in the spectrum of the signal
acquired by the microphone that are due to the influence of
environmental noise. Given that the time required for a vehicle
to pass in front of the microphone is relatively long (on the
order of a few seconds) the effect of this small change can be
reduced by applying a moving average filter over a shorter time
span than the vehicle passing time. Based on our preliminary
experimental results, the length of the moving average is set
to 320 ms in our evaluations.

To improve system accuracy and efficiency, standardization
is applied to all features before classification: (xf [i]�µf )/�f ,
where xf [i] is the [i]th entry in a feature vector, µf is the
vector’s average value, and �f its standard deviation.
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Fig. 6. Sound spectrogram [dB] when (a) a vehicle is passing and (b) no
vehicle is passing.
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Fig. 7. Experimental setup. Two microphones installed on the roadside.

IV. EVALUATION

In order to prove the viability of our proposed method, we
performed an initial system evaluation using data collected on
the roads of Kyushu University’s Ito campus.

A. Evaluation Environment

The experimental setup is shown in Fig. 7. Sounds were
acquired from two-way, two-lane roads and classification was
performed on vehicles from both lanes.

Two microphones are installed on the roadside at approxi-
mately 1 m from the ground, parallel to the road and connected
to a video camera. The sound of passing vehicles is then
recorded for approximately 20 minutes. The video camera used
is a SONY HDR-MV1 and the microphone an AZDEN SGM-
990, recording at a sample rate of 48 kHz and bit depth of
16 bits. As in [3], the distance between both microphones is

D = 50 cm, the distance between the microphones and the
center of the front lane is L = 3m and the distance between
the microphones and the back lane is L = 6m. The method
outlined in Fig. 3 was applied to the acquired audio signal,
and the vehicle type was determined through SVM multi-class
classification.

The total number of vehicles that passed during the exper-
iment was 178 (57 cars, 94 scooters/motorbikes, 25 buses,
and 2 trucks). Classification was performed for 3 classes:
cars, scooters/motorbikes, and buses. Because we only perform
classification on vehicles that were actually detected by the
detection block, we end up using 142 vehicles (46 cars, 78
scooters/motorbikes, 18 buses) in our evaluation.

The time taken by a vehicle to pass in front of the first
microphone is defined as Tpass. We set the initial passing
time of a vehicle in front of the microphone as t = t0 and
evaluate signals over the range [t0,i � Tpass/2; t0,i + Tpass/2]
where i corresponds to each successive passing vehicle, and
t0,i is the initial passing time of that particular vehicle. We
record each passing vehicle for [t0,i�Tpass/2 ; t0,i+Tpass/2]
before splitting the acquired audio signals into a sequence of
windows which are sequentially FFT’d and LPF’d resulting
in a spectrogram from which we extract frequency domain
features (Fig. 6). The vehicle data is randomly undersampled
to obtain classes with equal amount of entries, and the features
are inputted to a 10-fold cross-validated classifier.

The evaluation compared the classification accuracy of the
following two methods:

• Stereo classification method: Our proposed method illus-
trated in Fig. 3. By using the information obtained during
the detection process, the sound obtained by both of the
microphones is combined to emphasize the vehicle sound,
and the vehicle type is determined by supervised learning
using features obtained from the emphasized signal.

• Mono classification method: This method determines the
vehicle type using only one microphone. As the evalua-
tion environment in this paper uses two microphones, in
this case the vehicle type was determined using features
obtained from the left microphone’s audio signal only.

B. System Performance

To determine the accuracy of our proposed method, we
run our 10-fold cross validated SVM classifier 100 times and
average the results, leaving us with our final system accuracy
values and confusion matrices. The FFT window length was
set to 4096 points, and the features used in classification were
obtained by shifting the FFT window along the captured audio
signals with a 25 % overlap. We set Tpass = 2.0 s based on
the results of preliminary experiments.

Figure 8 shows the confusion matrices for (a) the stereo
classification method, and (b) the mono classification method.
The accuracy ratings are 95.01 % and 90.30 % respectively:
vehicle identification accuracy is improved by 4.71 % when
using the stereo classification method rather than the mono
classification method.

Table I shows the proportion of simultaneously and se-
quentially passing vehicles compared to the overall amount
of passing vehicles. We define a vehicle as “simultaneously
passing” if it passes within a previous vehicle’s Tpass period in
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Fig. 8. Confusion matrices for: (a) stereo estimation method, (b) mono
estimation method. Average accuracy is 95.01 % and 90.30 %, respectively.

TABLE I
NUMBER AND RATIO OF SUCCESSIVE AND SIMULTANEOUS PASSING

VEHICLES.

Normal Bike Bus Total
Detected 46 78 18 142
Simultaneous 11 33 2 46

(23.91%) (42.31%) (11.11%) (32.39%)
Successive 6 10 3 19

(13.04%) (12.82%) (16.67%) (13.38%)
Total 17 43 5 65

(36.96%) (55.13%) (27.78%) (45.77%)

the opposite direction, and “successively passing” if it passes
within a previous vehicle’s Tpass period in the same direction.

The authors believe the improvement in overall system
accuracy to be mainly due to the improved detection of simul-
taneously and successively passing vehicles achieved thanks
to the stereo classification method. By looking at Table I and
Fig. 8 we can see that the simultaneously and successively
passing vehicles make up only a relatively small proportion of
the overall detected vehicles, which is why the overall system
accuracy shows only a slight improvement.

The accuracy of our proposed system shows an 11-point
improvement over that of SAVeD, an existing acoustic vehi-
cle detection method designed to deal with the problem of
simultaneously and successively passing vehicles.

If we were to test our setup on an environment with a
larger proportion of simultaneously and successively passing
vehicles, we would expect a correspondingly proportional

increase in the accuracy of our proposed stereo microphone
method compared to the mono microphone method.

V. CONCLUSION

In this paper, we put forward a system capable of both de-
tecting and classifying passing vehicles using a stereo micro-
phone setup. Vehicle detection is performed using a soundmap-
based method based on previous works, and vehicle classi-
fication is performed using an emphasized signal obtained
from the time-shifted sum of the microphone signals. An
initial evaluation using data collected from roads on Kyushu
University’s Ito campus shows that our proposed method
yields a vehicle type classification accuracy of 95.01 %.
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