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Abstract. In this paper, we propose room-layout-based appliance con-
trol for voice user interfaces (VUIs) such as smart speakers. VUI-based
appliance control requires a control command including which device to
do what. However, we often suffer from an ambiguous target problem:
the control target device in a control command is ambiguous because an
ambiguous room name and demonstrative words are frequently used to
specify the target device. To address the ambiguous target problem, we
utilize room layout to estimate the control target. A user implicitly aims
to control devices in the room where the user is. We therefore estimate
the room where the user is now based on the room layout, which is esti-
mated on a smart speaker, to determine the control target. As a first step
toward room-layout-based appliance control, this paper presents the de-
sign of a room layout estimator. The experimental evaluations conducted
in our 1-bedroom smart house reveal that our room layout estimator es-
timates room directions and room types with accuracies of 0.850 and
0.714, respectively.

Keywords: Voice User Interface (VUI) - acoustic sensing - room direc-
tion and type estimation.

1 Introduction

Recent advances in wireless communication technologies and Internet of Things
(IoT) related technologies, smart home appliances are becoming prevalent nowa-
days. Using smart speakers working as a voice user interface (VUI) such as
Google Home and Amazon Alexa, we can control smart home appliances by our
voice.

On VUlI-based control, we need to specify which device to do what. For ex-
ample, we can turn on a light by ordering turn on the light in the living room
to a smart speaker. In this example, we need to explicitly specify the light in
the living room because there is a light in every room. To uniquely specify the
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Fig. 1. Concept of room-layout-based appliance control for smart speakers

target device, we often use room names, which are configured to a smart speaker
before using the smart speaker.

However, smart speakers often suffer from an ambiguous target problem. We
often forget to specify a room name because we implicitly aim to control devices
in the room where we are now. A target device specified by demonstrative words
such as this light also causes the ambiguous target problem.

Another cause of the ambiguous target problem is ambiguous room names.
We often use different names to specify a room. For example, we might try to
turn on the light in the living room by ordering turn on the light in the drawing
room or turn on the light in the front room.

To address the ambiguous target problem, context-aware decision-making has
been proposed [2,3]. In context-aware decision-making approaches, the control
target is estimated based on user’s context. The user context estimation, how-
ever, requires sensors and a machine-learning model pre-trained with the user’s
previous behaviors.

In this paper, we propose a new approach: room-layout-based appliance con-
trol, as shown in Fig. 1. In practical situations, we often use ambiguous control
commands such as turn on the light. When a user orders an ambiguous com-
mand turn on the light, we assume that the user aims to order turn on the light
in this room. A smart speaker therefore estimates the room where the user is
located using a user’s location estimator. Room layout, which consists of room
directions and types such as a living room and bedroom, is also estimated by a
smart speaker using a room layout estimator to determine the room name where
the control target is located.

As a first step of the above goal, this paper presents the design of the room
layout estimator for smart speakers. Our assumption here is that smart speakers
are equipped with a couple of microphones to estimate users’ location. Analyzing
sound source direction, the room layout estimator first estimates the direction of
rooms. The type of the rooms is then estimated based on the activity sound, such
as faucet sound, dish sound, and TV sound, derived from the room direction.
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Although smart speakers on the market have a single microphone, we believe

that smart speakers would be equipped with multiple microphones to improve

robustness to noise and to improve users’ voice separation performance.
Specifically, our main contributions are as follows:

— We propose a room-layout-based appliance control method for smart speak-
ers. To the best of our knowledge, this is a first attempt to utilize the layout
of rooms estimated on smart speakers to determine the control target appli-
ance.

— We present the design of a room layout estimator for smart speakers equipped
with multiple microphones. In contrast to existing sound source localization
technologies, our approach for the room layout estimation utilizes the room-
specific characteristics of reflected sound to distinguish different rooms.

— We show the basic performance of our room layout estimator by experi-
mental evaluations. We collected home activity sound data at two different
houses. The experimental evaluations demonstrated that the room direc-
tion estimation accuracy and room type estimation accuracy were 0.850 and
0.714, respectively.

The rest of this paper is organized as follows. Section 2 describes related
work on sound source localization in indoor environments. In Sect. 3, we present
the design of our room layout estimator that utilizes multiple microphones on a
smart speaker, followed by experimental evaluations in Sect. 4. Finally, Sect. 5
concludes the paper.

2 Related Work

To the best of our knowledge, this is a first attempt to estimate room layout,
not sound sources, using a microphone array.

Sound source localization, which estimates the location of sound sources us-
ing a microphone array, has been widely studied such as time delay estimation,
beamforming, and subspace-based methods. Typical time delay estimators are
cross-correlation-based methods where sound sources’ locations are estimated by
calculating cross-correlations between microphones [12,15,7]. The beamforming
methods are represented by delay-and-sum beamformers, which combine sound
signals on multiple microphones with phase compensation [14,16]. The represen-
tative subspace-based method is the MUSIC method that utilizes orthogonality
of signal and noise components in the spatial correlation matrix of microphone
array signals to estimate sound sources’ location [11,4].

Many studies on sound source localization try to reduce the influence of
reflected sound signals in indoor environments, where the sound localization
performance degrades because of reverberation.

Suzuki et al. presented a sub-band peak hold process, which takes the ampli-
tude of a direct sound signal, i.e., the sound signal firstly arrived at microphones,
and masks the reflected sound signals that arrive after the direct sound [13].
Okamoto et al. applies a spatial averaging method on a 3-dimensional space
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Fig. 2. Example of a sound density map with a single sound source moving in 4 rooms

model by dividing a microphone array into multiple sub-arrays and averaging
the spatial matrices of each sub-array [8].

Ishi et al. estimates the locations of multiple sound sources using a spatial
model and a ceiling-mounted microphones array consisting of 16 microphones [5].
The 3-dimensional space model is estimated, which is used to estimate the in-
fluence of reflected sound signals. Ribeiro et al. also reported a sound source
localization robust to reflected signals relying on an actual 3-dimensional space
model [10].

However, these methods require a large number of microphones, e.g., 16 mi-
crophones. The 3-dimensional space modeling is a novel approach, while high
computational resources or much human effort are required to construct the
space model. Many issues remain to be solved to estimate the room layout using
a resource-limited smart speaker with a limited number of microphones.

3 Room Layout Estimator for Smart Speaker

3.1 Approach

Our primary approach to estimate the room layout is to extract the reverber-
ation features using a sound density map. The sound density map is a map of
sound power distribution as a function of time on each angle. We found that the
sound signals from different rooms have different reverberation features because
of the difference in size, wall locations, and diffraction objects. The difference
in reverberation features appears as a difference of a band on the sound density
map. We therefore distinguish sound signals from different rooms based on the
features of bands on a sound density map by unsupervised learning algorithms.

Figure 2 shows an example of a sound density map with a single sound source,
i.e., a vacuum cleaner, moving in 4 rooms. We installed a microphone array in a



Design of Room Layout Estimator Using Smart Speaker 5

asaa Steering Vector
' ' l ' Sound Data

V} \ 4

Sound Mapper

Sound
y Density Map
Sound Source
Divider

* \ \

Room Direction | || Room Type | _ Room

Estimator Estimator Type
Room Angle

Fig. 3. Overview of room layout estimator for smart speaker

room of a 1-bedroom smart house and collected sound signals to draw a sound
density map using the MUSIC method [11]. In Fig. 2, the moving sound source
moves from a room to the next room at the time indicated by the dashed lines.
We can confirm that the width and fluctuation of the band appear on the sound
density map are dependent on the room where the sound source is located.

There are multiple sound sources in a practical environment, resulting in
multiple bands corresponding to the sound sources on a sound density map. We
first divide sound sources and then group the sound sources by estimating the
room where the sound source is located by unsupervised learning with features
extracted from a sound density map.

3.2 Assumptions

We assume that our method, i.e., room layout estimator for a smart speaker,
is used in a residential environment such as a 2-bedroom house where multiple
rooms are on the same floor and are adjacent to each other via doors. A smart
speaker with a microphone array is installed in one of the rooms. Our goal is to
estimate the room layout of rooms connected via a door to the room where the
smart speaker is installed. In these rooms, multiple people are living together.
They might make living noises at different locations at the same time. The
number of rooms next to the room where the smart speaker is installed is given
prior to the room layout estimation.

3.3 Design Overview

Figure 3 shows the overview of our room layout estimator for a smart speaker.
The room layout estimator consists of a sound mapper, sound source divider,
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room direction estimator, and room type estimator. The sound mapper retrieves
sound data using a microphone array and calculates sound power distribution on
each angle using the MUSIC method to draw a sound density map. The sound
source divider groups sound density map points into sound sources, which are
more grouped into rooms where the sound source is located in the room direction
estimator to estimate the room direction. The room type is finally estimated by
the room type estimator using supervised learning with features extracted from
sound signals of each room.
The following sections describe the details of each component.

3.4 Sound Mapper

The sound mapper performs the MUSIC to draw a sound density map, which is
a map of the sound power distribution on each angle as a function of time. The
MUSIC method has a high angle estimation resolution and is useful to extract
reverberation features as fluctuations of the sound arrival direction.

Figure 4 shows the overview of the sound mapper. As shown in Fig. 4, the
sound mapper collects sound data using a microphone array. A steering vector, a
vector describing phase differences of sound signals on each microphone, is also
calculated from the physical arrangement of the microphone array.

The collected sound signals are segmented by a fixed time-length window
for fast Fourier transform (FFT). Let x(f,t) be a vector of sound frequency
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Fig. 5. Difference in sound traveling distance between two linearly aligned microphones

components of frequency f at time ¢. x(f,t) is a M-dimensional vertical vector,
where M is the number of microphones in the microphone array.
The sound mapper calculates cross spectrum matrix R(f) as

R(f) = E [x"(f.0)x(f,1)] , (1)

where zl denotes the Hermitian transpose of a vector z and E[ ] denotes an
averaging process. We then calculate the eigenvalues and eigenvectors of the
cross spectrum matrix R(f). The number of signal and noise components is
estimated based on the distribution of the magnitudes of the eigenvalues over
multiple windows. Assuming that we have N (< M) signal components, we obtain
the noise eigenvectors E,, (f) corresponding to the remaining M — N eigenvalues.

A steering vector is calculated from the physical arrangement of the mi-
crophone array. As shown in Fig. 5, the difference in sound traveling distance
between two linearly aligned microphones separated by distance d is dsin,
where 6 is the sound arrival angle. dsin # corresponds to the phase difference of
27 fdsin6/c, where c is the speed of sound in air. The steering vector a(f, f) of
M linearly aligned microphones is therefore calculated to be

a0, f) = [1 e I% =326 ... e—j(M—l)ﬂT )

where ¢ = 2rfdsinf/c and 7 denotes the transpose operation. Although we
used an example of linearly aligned microphones, the same idea can be used to
calculate the steering vector for a different microphone setup.

Using the eigenvectors E,, (f) and the steering vector a(0, f), we derive narrow-
band sound power distribution Pyusic(f, f) as

1
(0, /) En(f) B (f) a0, f)

We finally derive wide-band sound power distribution Pyysic as

3)

Pyusic(0, f) = ol

- 1
Pyusic = ¢ > Puusic(8, ). (4)
f

Here we assume there are k frequency components in FFT results. Pyysic has
peaks on the angle of sound sources. We draw Pyiusic as a function of angle and
time, deriving a sound density map.
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Fig. 6. Overview of filtering on sound density map

We apply a filtering process to a sound density map because a raw sound den-
sity map includes sound power information corresponding to noise components.
Figure 6 shows the overview of the filtering process. We first apply a MIN-
MAX normalization process (Fig. 6b) and extract top half points at each time ¢
(Fig. 6¢). Top 10-percent points are finally extracted at each time ¢ (Fig. 6d).

3.5 Sound Source Divider

The sound source divider groups the points on a sound density map into sound
sources. A sound source moves not so quickly, resulting in a continuous band on
a sound density map. When there are multiple sound sources, we can observe
multiple bands on a sound density map. We apply the DBSCAN, a density-based
clustering method, to a sound density map to group points on a sound density
map into sound sources.

Figure 7 shows an overview of the sound source divider. The clustering pro-
cess consists of two steps.

In the first step, we extract sound density map points corresponding to sound
sources in the room where the smart speaker, i.e., the microphone array, is
installed. We perform the DBSCAN clustering with four features: peak width at
time ¢, the number of peaks at time ¢, angle 8, and time ¢. Each cluster is a set
of points on a sound density map corresponding to a single sound source.
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The second step more divides sound density map points corresponding to
sound signals from the room where the smart speaker is installed. Sound signals
from sound sources in the same room as the smart speaker show specific features.
The second step utilizes the DBSCAN clustering with three features, different
from the first step: angle 6, time ¢, and wide-band sound power information
Pyusic (8, t). Sound sources in the same room as the smart speaker are estimated
based on the angle variance of points in clusters divided in the first step. The
cluster that has the largest angle variance is estimated as the sound source in
the same room as the smart speaker because the sound signal arrives from any
direction in the room.

Finally, all the clustering results are merged to complete the sound source
segmentation.

3.6 Room Direction Estimator

Figure 8 shows an overview of the room direction estimator. The room direction
estimator first groups sound sources into the rooms where the sound source is
located using the k-means clustering. The k-means clustering utilizes four kinds
of features calculated for each sound source: mean angle, the range of angle,
mean sound power Pyusic(d,t), and the density of sound density map points.
The density is a ratio of the number of sound density map points to the area
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size of the rectangle where the sound density map points are located. The k is
set to the number of rooms, as is assumed to be given.

The room direction estimator then calculates the most frequent sound arrival
angle in each cluster, estimating the room direction. The room where the smart
speaker is located is excluded from the room direction estimation because the
room direction cannot be defined. The smart speaker co-located room is easily
estimated based on the angle variance.

3.7 Room Type Estimator

Figure 9 shows an overview of the room type estimator. The room type estimator
synthesizes the sound signals in the same room and estimates the room type by
supervised learning. The room type estimator first calculates frequency compo-
nents x(f, t), which is the same process as in the sound mapper. The synthesized
sound signal is then calculated as

y(f,t) =a’ (0, f)x(f.1), (5)

where a(f, f) is the steering vector given in Sect. 3.4.

The synthesized sound signal y(f,t) is divided by a fixed time-length window
to extract features for supervised learning. We calculate basic statistics, i.e.,
mean, maximum, minimum, and variance, of six kinds 25 metrics below in each
window as features, referring to [1], resulting in a 100-dimensional feature vector.

1. MFCCs: 20 Mel frequency cepstrum coefficients (MFCCs)

2. Zero crossing rate: the rate at which the positive and negative amplitudes
are switched in the time-domain waveform

3. RMS: root mean square of sound signals

Spectral flatness: a measure of how the sound is noise-like [6,9]

5. Spectral centroid: barycenter of the spectrum [9]

=~
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6. Spectral roll-off: frequency so that major components of the sound energy is
contained below this frequency [9]

The room type estimator finally classifies the room type of each room us-
ing the 100-dimensional feature vectors. We don’t limit the classifier algorithm.
We use a Random Forest classifier in this paper as an example. The classifier
model is trained in advance using sound data collected in a typical residential
environment, not limited to the actual smart speaker location.

4 FEvaluation

We conducted initial evaluations using sound data collected in our 1-bedroom
smart house. We also collected sound data of specific daily activities in a normal
house, which is used for training of room type estimator. We separately eval-
uated two tasks in our room layout estimation: room direction and room type
estimations.

4.1 Experiment Setup

Figure 10 shows the room layout and actual microphone setup in our smart
house. A 4-channel microphone array, i.e., four AZDEN SGM-990 microphones
separated by 50 mm, was installed in the living room on a tripod 1 m away from
the walls at the height of 0.7m, as shown in Fig. 10a. Sound data was collected
using a Behringer UMC404HD USB audio interface connected to a laptop at a
sampling rate of 44.1 kHz with code length 16 bits.

4.2 Room Direction Estimation Performance

To evaluate the room direction estimation performance, we collected sound data
while two subjects A and B were talking and walking in our smart house, creating
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Table 1. Dataset used for evaluation of room direction estimation

Dataset Sound source 1 | Sound source 2
(40s x 20) |[(Subject A voice)| (Subject B voice)
Bedroom DS |Bedroom Bedroom (10s)
Kitchen DS |Kitchen — kitchen (10s)
Washroom DS|Washroom — washroom (10s)
Living DS Living room — living (10s)
16
14
12
10
8
6
“ \
: |
. I | 1
=75 =50 =25 0 25 50 75
Angle [degree]

Fig. 11. Histogram of room direction estimation results

four datasets shown in Table 1. Each dataset consists of 20 40-second recordings.
Each recording is sound data collected while the subject A was freely walking in
a room indicated in Table 1. The subject B was freely walking in a room for 10
seconds and moved to another room, as indicated in Table 1.

The room direction estimation performance was evaluated in two aspects: the
room-based sound source clustering performance and room direction accuracy.
The room-based sound source clustering performance was evaluated using the
adjusted Rand index (ARI), which is a commonly used metric for evaluations
of clustering performance. The room direction accuracy was evaluated using the
rate of the number of trials correctly estimated room direction. As shown in
Fig .10, the microphone array was installed in the kitchen, which is next to the
living room, bedroom, and bathroom. k in the room direction estimator, i.e., the
number of clusters for the k-means, was therefore set to 4.

Figure 11 shows the histogram of the room direction estimation results. Red,
green, yellow rectangles represent the correct room directions of the bedroom,
living room, and washroom, respectively. The mean ARI was 0.725. The direction
estimation accuracy, i.e., the rate of the number of trials in red, green, and
yellow rectangles in Fig. 11, was 0.850. We can confirm that our room direction
estimator successfully estimated room direction with no training data.

For reference, the direction estimation accuracy was increased to 0.875 when
we use trials with ARI greater than 0.9. The room direction estimation perfor-
mance highly relies on the accuracy of sound source clustering into rooms.
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Table 2. Room direction estimation performance for each dataset

Dataset Mean ARI|Direction estimation accuracy
Bedroom DS 0.897 0.783
Kitchen DS 0.327 0.683
Washroom DS 0.746 0.967
Living DS 0.925 0.967

Table 3. Activities used in room type estimation evaluation

(a) Specific activity

Room type |Activities

Living room|Watching TV, talking on phone
Kitchen Tidying up dishes, washing dishes, opening/closing fridge and
kitchen cabinet doors

Bedroom turning over in bed, sleeping

(b) Free activity
Room type |Activities

Living room|Watching TV
Kitchen Washing dishes, eating, using microwave
Bedroom Using smartphone on a bed, sleeping

We also compared the performance of room direction estimation for each
dataset. Table 2 shows the mean ARI and direction estimation accuracy for
each dataset. From Table 2, we can see that the performance with the kitchen
dataset was significantly lower than that with other datasets. As shown in Ta-
ble 1, the kitchen dataset includes sound signals of subject A in the kitchen,
where microphones were installed. Because the sound signals from the room
where microphones were installed can reach the microphones from any direc-
tion, sound source segmentation described in Sect. 3.5 was highly unsuccessful,
which resulted in the significant degradation in performance.

4.3 Room Type Estimation Performance

To evaluate the room type estimation performance, we collected sound data in
our smart house while a subject stays in each room. We installed a microphone
at the same height and location as indicated in Fig. 10 and collected sound
data for each room activity. The sound data is collected both in the controlled
environment where the subject did a specific activity and in the free environment
where the subject stayed in a specific room doing free activities. In the controlled
environment, sound data of each activity shown in Table 3a was collected for
120 seconds. In the free environment, we collected sound data for 30 minutes
for each room. We emphasize that we gave no instruction for activity during the
stay in the free environment. The actual activities during the 30 minutes are
shown in Table 3b.
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Table 4. Activities for training of room type estimator

Room type |Activities

Living room|Watching TV, talking

Kitchen Cutting, frying, eating, washing dishes, using microwave
Bedroom  |Sleeping
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Fig. 12. Confusion matrices of room type estimation results

We also collected training data for room type estimation because the room
type estimator uses supervised learning. The training data was collected in a
normal house while a subject did an activity shown in Table 4. We used a Sony
PCM-D100 recorder with an embedded microphone to evaluate the influence of
microphone and environment differences. Each activity sound was recorded for
120 seconds.

We evaluated the room type classification accuracy both in the controlled
and in the free environments using the room type estimation model trained with
the data collected in the normal house. We divided sound data by a 10-second
window and calculated features for each windowed data, which were used as
input to the room type estimator. Note that we did not perform the sound
signal synthesis described in Sect. 3.7 as an initial evaluation in this paper,
evaluating the raw room type estimation performance to validate the feasibility
of our proposal.

Figure 12 shows the confusion matrices of the room type estimation results.
Figures 12a and 12b show confusion matrices for the controlled and free environ-
ments, respectively. The mean accuracies in the controlled and free environments
of room type estimation were 0.714 and 0.536, respectively. Even though the
room type is estimated using the model trained with the data collected in a dif-
ferent environment, we derived high estimation accuracy. We can conclude that
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the room type estimation can be realized using the estimation model trained in
advance with data collected in a normal house environment.

However, in the bedroom, the room type estimation accuracy was lower than
the accuracy in other rooms. We can easily guess that the sound power of bed-
room activity shown in Table 3 is relatively low compared to the other room
activities, which resulted in the low estimation accuracy. The room type esti-
mation accuracy in the bedroom in the controlled environment was 63.9%. We
believe that a sufficient amount of training data improves the room type esti-
mation accuracy.

5 Conclusion

In this paper, we presented the design of a room layout estimator for smart speak-
ers. The room layout, i.e., the direction and type of next rooms, are estimated
using reverberation features that are extracted from a sound density map, which
is a map of sound power distribution as a function of time. The sound sources are
grouped into rooms where the sound source is located by unsupervised learning
to estimate the room direction. The room type is finally estimated by supervised
learning with a pre-trained model. We conducted experimental evaluations and
demonstrated that our room type estimator successfully estimated room direc-
tions and room types with accuracies of 0.850 and 0.714, respectively. As our
future work, we plan to improve the accuracy of room type estimation in the
bedroom by introducing novel features. We also plan to study the influence of
the location of big objects such as furniture, and verify our method in different
room layouts.
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