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Abstract—The Japanese Road Traffic Law dictates that drivers
must prevent making ‘water splashes’, to avoid pedestrians’
clothing and belongings getting wet. However, drivers sometimes
mistakenly make water splashes at night or in rain. It is effective
to share information about water splashes between drivers to
help drivers avoid water splashes easily. To collect the water-
splash information, it is insufficient just to detect puddles or
their causes, such as cracks, potholes, or ruts, because water
splashes occurs not only on puddles but also on flat road surfaces
where water flows. In this paper, we present a method to detect
actual water splashes caused by vehicles. We use an acoustic
sensing method that classifies sound recorded inside the vehicle
into two classes, which are ‘splashing’ and ‘non-splashing’, with
supervised learning. We achieved an F measure of approx. 90%
and confirmed the effectiveness. Additionally, we confirmed that
acoustic features focused on a low-frequency range are effective.

Index Terms—water-splash detection, acoustic sensing, ma-
chine learning, microphone

I. INTRODUCTION

Drivers have a responsibility to avoid making water splashes
that can soak the clothes and belongings of pedestrians.
Although some drivers recognize the road conditions and avoid
puddles, they have still difficulties preventing water splashes.

To ensure that drivers avoid water splashes, it is effective
to collect information about water splashes and share the
information between drivers. Recent studies have proposed
methods to detect puddles and their causes, such as cracks,
potholes, and ruts where water can accumulate [1]–[4]. How-
ever, detecting puddles and their causes is insufficient to avoid
water splashes because water splashes can also occur when
a vehicle passes through an area where water is flowing.
Small puddles might cause no water splashes, which results in
false positive detection. Additionally, the accuracy of puddle
detection methods with cameras could be adversely affected at
night or in rain. To help drivers avoid water splashes, accurate
water-splash detection is required.

In this paper, we present an acoustic sensing method to
detect water splashes. Our method utilizes an embedded mi-
crophone installed in car equipment, such as a car navigation
system or a dashcam, to detect the sound of water splashes.
Acoustic features that reflect the sound of water splashes are
extracted from the acoustic data. Using the features as training
data, a supervised learning model is constructed to detect
whether a water splash has occurred.

Specifically, our main contributions are as follows:

• We propose a water-splash detection method, which is
important to enable drivers to fulfill their responsibility.
To the best of our knowledge, water-splash detection is
novel in the field of intelligent transportation systems.

• We show experimental evaluation to demonstrate that our
detection method successfully detects water splashes with
high accuracy of an F measure of approx. 90%.

• We show that the Mel-Frequency Cepstral Coefficient
(MFCC) is an effective acoustic feature for water-splash
detection. The frequency range below 6.3 kHz is particu-
larly helpful in detecting water splashes.

The remainder of this paper is organized as follows. In
Sec. II, we present the related works about puddle detection,
road anomaly detection, and acoustic sensing. Sec. III analyzes
the characteristics of water-splash sound collected in an ac-
tual environment. Sec. IV presents our water-splash detection
method including acoustic features, followed by experimental
evaluations and discussions in Sec. V. Finally, conclusions are
presented in Sec. VI.

II. RELATED WORKS

Water splashes mainly occur in puddles. Some methods to
detect puddles and their causes such as cracks, potholes, and
ruts, have been reported. X. Han et al. and Kim et al. proposed
image-based puddle detectors [1], [2]. They used the fact that
the surfaces of puddles on an image reflects the surrounding
scenery. Basavaraju et al. detected cracks and potholes on a
road surface [3]. J. Han et al. estimated the depth of ruts on
a road surface [4].

In the field of acoustic sensing, studies have been conducted
on road condition classification. Bahrami et al. classified dry
and wet road surfaces using two streams of Convolutional
Neural Networks (CNNs), with an accuracy of 92.3% [5].
Abdić et al. also classified dry and wet road surfaces using
supervised learning, and achieved an accuracy of 93.2% [6].
They collected acoustic data with a microphone installed on
the outside of a vehicle, near the tires. They also extracted
features including those based on the Mel scale, which is a
feature of human hearing.

There are various acoustic sources outside the vehicle, such
as the sound of other vehicles running and rainfall. The method
of installing microphones outside the vehicle, as in the study
by Bahrami et al. may adversely affect the accuracy of the
machine learning model due to the inclusion of these noises.
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TABLE I
DATA COLLECTION ENVIRONMENT

Arguments Environment
Wheather Rain
Time of Day Night
Road Condition Wet, Asphalt surface
Recording Device ZOOM Q2N-4K
Microphone audio technica AT9944
Sampling Rate 44.1 kHz
Bit Length 16 bit
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Fig. 1. Spectrogram of water-splashing sound

III. PRELIMINARY ANALYSIS

In this section, we analyze acoustic data collected from an
actual vehicle during the occurrence of water splashes. The
aim of this analysis is to clarify the characteristics of the water
splashes in both frequency and time domains.

A. Data Collection Environment

Table I shows the data collection environment. A single
microphone was installed above the rear seat of a vehicle.
The collected recordings include 48 water splashes.

B. Calculation of Spectral Envelope Differences

To determine the acoustic characteristics in the frequency
domain, we compared the spectral envelope of vehicle running
sound with and without water splashes. We calculated the
average difference in the spectral envelope in the following
steps.

1) The recordings were divided into 10-second windows
with 50% overlap. Then, windows including water-
splash sound are used, discarding those with no water-
splash sound. The windows including the water-splash
sound consist of both parts in which the water-splash
sound occurs and does not occur.

2) For the 10-second windows extracted in the first step,
we extracted the first 0.37-second segments for each of
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Fig. 2. Average difference in spectral envelopes of splashing and non-
splashing sounds

the splashing parts and non-splashing parts. The 0.37-
second segment corresponds to 16384(= 214) samples
at 44.1-kHz sampling, which is determined based on
our observation that the length of water-splash sounds
is longer than approximately 0.5 seconds.

3) We performed a fast Fourier transform for each segment
and calculated the sound log power, i.e., the logarithm
of the square of sound intensity, in the segment as a
function of frequency, deriving a spectral envelope for
each segment.

4) For spectral envelopes of splashing and non-splashing
segments in the same window, we calculated the differ-
ence and averaged over all the windows.

C. Data Analysis Result

Figure 1 shows an example of the spectrogram of a 10-
second window including a water-splash sound. In Fig. 1, the
water splash occurs from 4.8 to 5.8 seconds. We can confirm
that the main frequency components of the water-splash sound
are below 12.5 kHz.

Figure 2 shows the average difference in the spectral enve-
lope. In Fig. 2, we can see a large difference between splashing
and non-splashing sounds at frequencies below 12.5 kHz. The
difference is particularly large at frequencies below 2.5 kHz.
From this analysis, we can confirm that the acoustic charac-
teristics of water splashes appear in the lower frequency range
of the human audible range, which is up to around 20 kHz.

IV. WATER-SPLASH DETECTION METHOD

A. Overview of Our Method

The proposed method consists of a learning pahse and
detection phase. In the learning phase, acoustic data from each
vehicle is collected along with the driving video. The acoustic
data is divided into splashing and non-splashing parts based
on the video images. The procedure of the data segmentation
is described below:

1) The recordings are divided into 10-second windows
including water-splash sounds, by the same process in
the step 1) in Sec. III-B.

2) For each of the remaining windows, we extract seg-
ments, using a 0.37-second window with 50% overlap,
from each of the splashing and non-splashing parts.

3) We extract acoustic features from each segment and
derive sets of acoustic feature vectors for each of the
splashing and non-splashing sounds.

Finally, the sets of feature vectors are used as training data
to construct a machine learning model that detects whether a
water splash has occurred. In the detection phase, the machine
learning model detects water splashes with acoustic features
extracted from the acoustic data newly acquired during driving.

In this paper, we define a splashing part as the moment
when water droplets are observed on the window of a car
in the driving video. Figure 3 shows the camera view from
the inside of a vehicle while passing through splashing/non-
splashing parts.
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Fig. 3. Camera view from inside of vehicle while passing through splashing
and non-splashing parts

B. Acoustic Features

In this paper, we use three types of acoustic features and
compare the accuracy of water-splash detection for each. The
details of each acoustic feature are described below. Each type
of feature is created by multiplying the acoustic spectrum by
the corresponding filter bank shown in Fig. 4 and performing
a discrete cosine transform.

1) MFCC
2) Linear-Frequency Cepstral Coefficient (LFCC)
3) Splash-Frequency Cepstral Coefficient (SFCC)
1) MFCC is an acoustic feature that expresses high res-

olution in the low-frequency range and low resolution in the
high-frequency range, mimicking the Mel scale. MFCC or Mel
scale-based features have been used in related works [5], [6].

2) LFCC is an acoustic feature with uniform resolution over
the entire frequency range. LFCC is used as a comparison
target for MFCC and SFCC.

3) SFCC is an acoustic feature with varying frequency
resolution, based on the analysis in Sec. III. The splash filter
bank has a high resolution in the region below 2.5 kHz, a
medium resolution in the frequency range between 2.5 kHz
and 12.5 kHz, and low resolution above 12.5 kHz. SFCC is
used to evaluate the acoustic features created through the data
analysis.

V. EVALUATION

This section reports the results of evaluating the machine
learning models described in Sec. IV. The evaluation aims to
clarify the effectiveness of the proposed water-splash detec-
tion method, the acoustic features effective for water-splash
detection, and the frequency range effective for water-splash
detection.

A. Conditions

The evaluation experiment was conducted by driving on
public roads in Hakodate city, in two separate trips. The
details of the data collection environment are shown in Table I.
The collected acoustic data were segmented according to the
method described in Sec. IV-A. Correct labels were assigned
to splashing and non-splashing parts respectively. The window
size was set to 0.37 seconds with 50% overlap. In order to
prevent duplication and deterioration in the quality of acoustic
features, acoustic data smaller than the window size were
excluded at the end of each splashing/non-splashing part. 19
dimensional acoustic features were extracted for each window

TABLE II
THE RESULTS OF ACCURACY EVALUATION (MFCC, LFCC AND SFCC)

Feature Type F measure
MFCC 90.90%
LFCC 88.16%
SFCC 89.61%

for each acoustic feature. The acoustic amplitude values were
normalized in accordance with EBU-R128. We constructed
the machine learning models with Support Vector Machine
(SVM).

B. Evaluation Method

1) Adjustment of the volume of acoustic data: The machine
learning models were created and evaluated using acoustic
data from 70 water-splash events. A total of 596 acoustic fea-
tures were used as training data, 298 each for splashing/non-
splashing. With the data segmentation described in Sec. IV-A,
more acoustic features were extracted from the non-splashing
part than from the splashing part. To prevent splashing/non-
splashing bias in the machine learning model, the same
number of data as that in the splashing part was randomly
selected from the acoustic features in the non-splashing part.

2) Separation of training data and validation data: In this
paper, the 70 water-splash events were divided into 5 groups
of 14 water-splash events each, and a 5-fold cross-validation
was performed with 1 group as the validation data and the
remaining 4 groups as the training data. If the acoustic features
are divided without considering which water-splash event they
are extracted from, the accuracy of the machine learning
model may be higher than in actuality because similar acoustic
features are included in both the training and the validation
data.

C. Evaluation Results and Analysis

In this section, we present the results of the evaluation
of our method. We also discuss the effectiveness of acoustic
sensing, effective acoustic feature types, and the frequency
range effective for water-splash detection. Table II shows the
average F measure obtained from 5-fold cross-validation for
the machine learning models created for each acoustic feature.

As a result, it was confirmed that water splashes were
detected with a high accuracy of approx. 90% for all features.

1) Analysis of Acoustic Features: The accuracy exhibited
by the machine learning models was highest for MFCC,
followed by SFCC, then LFCC. Acoustic features focused on
the low-frequency region, such as MFCC and SFCC, showed
higher accuracy than LFCC. This fact is consistent with the
characteristic noted in Sec. III, i.e., the difference between
splashing and non-splashing parts tends to appear in the
low-frequency region. Therefore, it is suggested that acoustic
features focused on the low-frequency region are effective for
water-splash detection.

However, the accuracy of SFCC, which reflects the acoustic
characteristics of water splashes in its resolution, was lower
than that of MFCC. This suggests that we need to improve the
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Fig. 4. Filter banks used in acoustic feature extraction

TABLE III
TOP 4 FREQUENCY RANGES MOST STRONGLY CORRELATED WITH

SPLASHING

Rank Frequency Range Correlation
1 4,200Hz-6,300Hz 0.35
2 1,050Hz-3,150Hz 0.33
3 11,500Hz-13,650Hz 0.30
4 10,500Hz-12,600Hz 0.28

criteria to determine the resolutions. In this paper, the criteria
to determine the resolutions of SFCC were qualitative. To
address this issue, it could be effective to reflect the correlation
between frequency ranges and the correct answer data of
splashing/non-splashing in the resolution for each frequency.

2) Analysis of Effective Frequency Range: The correla-
tion coefficients between the correct labels for splashing/non-
splashing and each dimension of the features were calculated
for LFCC, where each dimension of the features has the same
bandwidth of interest. Table III shows the top four frequency
ranges that are highly correlated with splashing/non-splashing.
The results indicate that the frequency range below 6.3 kHz,
where the MFCC resolution is high and the SFCC resolution
is medium, has a high correlation with the correct labels
of splashing/non-splashing. This suggests that this frequency
range is effective for the detection of water splashes.

On the other hand, the correlation coefficient with the
correct labels of splashing/non-splashing was high in the mid-
frequency region around 10 kHz, which was not focused on
in MFCC and SFCC. These results suggest that in addition
to the low-frequency region focused on by MFCC and SFCC,
focusing on the mid-frequency region around 10 kHz could
result in even higher water-splash detection accuracy.

3) Review of Analysis: The accuracy of our method reached
an F measure of approx. 90%, indicating the effectiveness
of our acoustic sensing method for water-splash detection.
The results of Sec. V-C1 also show that the acoustic features
focused on low frequencies, such as MFCC, are more effective
for water-splash detection. Additionally, the frequency range
below 6.3 kHz has a high correlation between the correct labels
of splashing/non-splashing, indicating that the frequency range
is effective for water-splash detection.

VI. CONCLUSION

The purpose of this study is to establish a method for
detecting water splashes from vehicles, in order to prevent

damage to pedestrians caused by water splashes. Toward
this end, we proposed a method using acoustic sensing. We
confirmed that our method is effective in detecting water
splashes with an F measure of approx. 90%. Additionally,
we confirmed that acoustic features focused on low-frequency
regions, such as MFCC, are more effective. Particularly, we
confirmed that the frequency range below 6.3 kHz has a high
correlation with the correct answer of splashing/non-splashing.

Future work will include the development of acoustic fea-
tures based on correlation coefficients between the correct
labels of splashing/non-splashing and each frequency. We will
also continue to collect acoustic data and construct machine
learning models that are robust to various road conditions,
weather, and internal and external noises.
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