
モデル駆動開発による
消費電力自己適応型ソフトウェアの開発方法論

田中 文也1,a) 久住 憲嗣2,3,b) 石田 繁巳3,c) 福田 晃2,3,d)

概要：組込みシステムは電力制限と多機能化による稼働時間短縮の背景から最大消費電力削減の必要があ
る．組込みソフトウェア開発には消費電力削減とサービス品質の両立の要求が存在し，ソフトウェアが
ハードウェアの消費電力に合わせて自身の消費電力を変更できれば要求を満たすことができる．本論文で
は，消費電力について自己適応を行うソフトウェアのモデルベースの開発方法論を提案する．提案手法で
は，ソフトウェアプロダクトライン開発におけるフィーチャモデルと ExecutableUMLで記述したステー
トマシン図を関連付け実行時に振る舞いを変更するソフトウェアを開発する．この手法を用いることで端
末の消費電力に応じたソフトウェアの消費電力の変更が可能でトレードオフの両立が可能になる．評価の
結果，平均応答時間 0.22秒，適応率 87.6%で消費電力について適応を行うことができた．

キーワード：組込みシステム，自己適応ソフトウェア，モデル駆動開発，消費電力解析

A Methodology to Develop Energy Adaptive Software
Using Model-Driven Development

Tanaka Fumiya1,a) Hisazumi Kenji2,3,b) Ishida Shigemi3,c) Fukuda Akira2,3,d)

Abstract: In an embedded system development, it is one of the crucial tasks to reduce maximum power
consumptions in order to power source limitation. We have to solve a trade-off between power consumption
and quality of service. If the software can change the power consumption in accordance with the power
consumption of hardware, the software can achieve both of reduction of maximum power consumption and
service quality. In this paper, we propose a model-based development methodology of software performing
self-adaptive for power consumption. In the proposed method, we develop software which changes its behav-
ior at runtime by linking state machine diagrams described by ExecutableUML to a feature-model used in
Software Product Line Development. This method makes it possible to change power consumption caused by
software behavior according to the power consumption of whole of the target device. The target software can
maximize the quality of service in a certain power constraint. Therefore the target software can achieve the
tradeoff between power consumption and quality of service. As a result of the evaluation, average response
time was about 0.22 seconds, and the adaptive rate was about 87.6%.

Keywords: Embedded System, Self-adaptive Software, Model-Driven Development, Energy Analysis

1 九州大学大学院システム情報科学府
Graduate School and Faculty of Information Science and
Electrical Engineering, Kyushu University, Motooka 774,
Nishi-ku, Fukuoka 819-0395, Japan

2 九州大学システム LSI 研究センター
System LSI Research Center, Kyushu University, Motooka
774, Nishi-ku, Fukuoka 819-0395, Japan

3 九州大学大学院システム情報科学研究院
Graduate School and Faculty of Information Science and
Electrical Engineering, Kyushu University, Motooka 774,
Nishi-ku, Fukuoka 819-0395, Japan

a) tanaka@f.ait.kyushu-u.ac.jp
b) nel@slrc.kyushu-u.ac.jp
c) ishida@f.ait.kyushu-u.ac.jp
d) fukuda@f.ait.kyushu-u.ac.jp

1. はじめに
組込みシステムはハードウェアの大きさや製造コストに

制限がある．バッテリー駆動の場合，バッテリーサイズが
制限されると蓄電容量が小さくなるため稼働時間が短くな
る．また，機能の多様化にともなうタスク実行シナリオの
多様化により組込みシステムの使用頻度は上昇しており，
稼働時間の短縮が問題である．これらの背景からユーザが
要求する稼働時間を実現するためにソフトウェアの消費電
力を制限する必要があり，最大消費電力削減の要求が存在

する．一方で，消費電力とサービスの品質にはトレードオ
フが存在する．組込みソフトウェア開発ではソフトウェア
の消費電力削減とサービス品質向上の両立が要求される．
ソフトウェアがハードウェアの消費電力に合わせて自身の
消費電力を変更することができれば，端末の最大消費電力
の削減とサービス品質の両立が可能である．周囲の状況に
応じて振る舞いを変えることができる自己適応型ソフト
ウェア [1]が存在する．組込みソフトウェアは設計時に想
定されていないシナリオで実行された場合に組込みシステ
ムの動作を保証することができないため，実行時のシナリ
オに応じたタスク実行の機能が期待される．実行時のシナ
リオは常に変化する．そのため状況に応じた最適な振る舞
いは設計時には記述することが難しく，変化する実行時の
状況に応じてソフトウェアは最適な振る舞いをするように
動的に判断を下す必要がある．本論文では他のソフトウェ
アの消費電力や電源の状況といった電力の状況を周囲の状
況として取り扱い自己適応を行う．
ソフトウェア開発の手法にモデル駆動開発 [2] とソフ

トウェアプロダクトライン開発方法論 (Software Product

Line; SPL)[3]という手法が存在する．モデル駆動開発はよ
り上流の過程で検証を行うことで訂正コストを削減するこ
とを目的とした開発手法である．また，コードを自動生成
するためモデルとコードの一貫性を保つことが容易である．
SPLはソフトウェア単体ではなく，ソフトウェア群全体の
開発を最適化する手法である．この手法では，ソフトウェ
ア群中のソフトウェア間での共通性と可変性を分析したツ
リー構造をフィーチャモデルとしてモデル化する．フィー
チャモデルのツリーの各可変性がソフトウェア間の相違点
であり，ツリーから共通フィーチャと可変フィーチャを組
み合わせて選択し設計することで製品群全体としての生産
効率を向上させることが可能である．
本論文では SPL 手法で分析したフィーチャモデルと，

ExecutableUML[4]を用いて記述したステートマシン図を
紐付けて開発を行う消費電力自己適応型ソフトウェアの開
発手法を提案する．フィーチャをソフトウェアの振る舞い
に割り当て，バリエーションによって異なる振る舞いの違
いをステートマシン図にステートの違いで記述する．消費
電力状況に応じてフィーチャを動的に選択することで実行
時に自身の振る舞いを変更し自己適応を可能とする．設計
時にあらかじめ，モデルベースの消費エネルギー解析手法
を用いてバリエーションごとの消費電力を推定しておき，
推定値をもとに振る舞いを変更できるようにする．実行時
にはほかのソフトウェアの消費電力や電源の状況に応じて
振る舞いを変更することで消費電力とサービス品質の観点
から最適に実行されるソフトウェアを記述することが可能
である．
本論文の構成は以下の通りである．第 2章では既存研究

として自己適応ソフトウェアの開発における SPL手法の

応用について述べる．第 3章では提案手法についての説明
を行う．第 4章では評価方法と評価結果を述べ，第 5章で
はまとめと今後の課題について述べる．

2. 既存研究
本節では SPLの手法を用いた自己適応についての既存

研究について説明する．既存研究は，設計時に準備をし実
行時に動的に判断を下す点で本研究との類似性がある．

2.1 可変モデルを用いたサービス構成の動的適応
文献 [5]では，Webサービスの操作をフィーチャとした

SPLの手法を用いて，実行時にサービス構成の動的適応
を行うフレームワークが提案されている．このフレーム
ワークはWebサービスの設計時と実行時の両方で利用さ
れる．設計時には，実行時の動的適応をガイドするモデ
ルの生成をサポートする．実行時にはこれらのモデルを
用いて適応を行う．実行時の適応はフレームワーク中の
MoRE-WS(Model-based Reconfiguration Engine for Web

Service)が行う．MoRE-WSによる実行時の適応の流れを
以下に述べる．
(1) CONTEXT MONITORによって検出されるコンテキ

ストの変化に応じてコンテキストモデルを更新．
(2) コンテキストモデルの情報から定められたSLA(Service

Level Agreement)を違反していないかを判断．
(3) SLAを違反していた場合，フィーチャの活性・不活性

を行い適応規則に従って可変フィーチャモデルを適応．
(4) 適応されたフィーチャモデルからサービス構成の再調

整案を生成しサービス構成を調整．
(5) 調整されたモデルは，WS-BPEL(Web Services Busi-

ness Process Execution Language)コードにフラグメ
ントを追加・削除してサービス構成に反映．

文献 [5]でコンテキストとして扱われ自己適応を引き起
こしているのはWebサービスの操作に付随するプロパティ
である．プロパティの値が規定の値になった時に達成され
る context conditionsによって SLAの違反が表現される．
また，自己適応は SLAの違反によって引き起こされるた
め，適応のコンテキストとして扱われているものはサービ
スの操作のプロパティであると言える．
フレームワークの動的適応に関する評価を GQM(Goal

Question Metric)モデル [6]を用いて評価している．評価
に用いられた二つの GQMモデルを表 1，表 2に示す．
表 1の GQMモデルの評価では 30,000個の要素を持つ

モデルに対して最大 300ミリ秒で適応の操作を行うことが
できた．これはフレームワークで取り扱う範囲では十分な
応答速度である．
表 2 の GQM モデルの評価では，1 ミリ秒から 5 ミリ

秒間隔で 100 個の問題のあるコンテキストイベントを発
行したがMoRE-WSは性能を低下させることなく context

表 1 GQM モデル 1

Table 1 GQM model 1

評価層 内容
Goal MoRE-WS の視点から効果的なサービス構成の動

的適応の実行
Question MoRE-WS が効果的に動的適応を実行可能か
Metrics モデル内の要素の数

サービス構成の追加・削除の応答速度
現在の設定の取得速度
フィーチャを割り当てたサービス操作の取得速度
構成モデルの要素をWS-BPEL に反映する速度

表 2 GQM モデル 2

Table 2 GQM model 2

評価層 内容
Goal システム分析側の視点から高負荷下での飽和回避
Question MoRE-WS が高負荷下で十分な性能を発揮可能か
Metrics 問題のあるイベントの数

問題のあるイベント間のタイムフレーム
コンテキストを監視する頻度
影響されうる context conditions 数
高負荷下での応答速度

conditionsを調整することができた．よってMoRE-WSは
高負荷下でも性能を低下させることなく動作できると評価
できる．

2.2 既存研究の問題点
既存研究で提案されるフレームワークは高い抽象度で適

応を実現している．そのため実装に近いモデルや情報を取
り扱う適応に関して問題がある．例えば，既存研究では端
末上の消費電力は実装に非常に近い情報であるためコンテ
キストとして取り扱うことができない．また，ソフトウェ
アレベルで消費電力を扱うことができる手法 [7]は存在す
るが消費電力を扱って自己適応を行うソフトウェアの開発
方法論はまだ確立されていない．

3. 提案手法
既存研究では実装に近い情報を取り扱うことができな

かったため，消費電力を対象とした自己適応が不可能で
あった．本手法ではモデルベースの消費エネルギー解析手
法を取り入れ，端末上の消費電力をコンテキストとして取
り扱い消費電力について自己適応を行う．この手法を用い
ることで消費電力状況に応じてソフトウェアの振る舞いを
動的に変更することが可能である．

3.1 全体像
提案手法によるソフトウェア開発の全体像について述

べる．
まず，設計時に電力状況によって異なるソフトウェアの

図 1 開発手法の全体像
Fig. 1 Overviw of proposed method

実行時の振る舞いをフィーチャとしてフィーチャモデルを
作成する．つぎに，ExecutableUMLで振る舞いのモデルを
作成する．振る舞いのモデルでは，電力状況によって異な
る振る舞いをステートマシン図のステートの違いで表現す
る．次に，モデルベースの消費エネルギー解析手法を用い
て，作成したステートマシン図からバリエーションごとの
消費電力を推定する．この推定値をステートマシン図に追
加することで消費電力情報付きの ExecutableUMLモデル
を作成する．次に，消費電力情報付きモデルとフィーチャ
モデルを紐付けフィーチャ依存遷移付き ExecutableUML

モデルを作成する．このモデルは選択フィーチャによって
状態遷移に制限が存在する．最後に，モデル駆動開発に基
づく自動コード生成によってソースコードに変換しソフト
ウェアとして実行する．開発ソフトウェアは，端末の実行
時の電力状況に応じた動的バリエーション変更によって，
実行時に要求される最大消費電力以下での実行が可能であ
る．図 1に提案手法の全体像を示す．

3.2 フィーチャモデルの作成
フィーチャモデルの作成について説明する．フィーチャ

モデルはフィーチャ間の関係を表現したモデルである．本
論文ではソフトウェアの実行時の振る舞いをフィーチャと
してフィーチャモデルを作成する．
実行時の振る舞いのうち，バリエーションによらない振

る舞いを共通フィーチャ，バリエーションによっては行わ
れない振る舞いを可変フィーチャとする．可変フィーチャ
のうち，複数の振る舞いが排他的に選択される振る舞いを
択一フィーチャ，選択されない場合がある振る舞いをオプ
ションフィーチャとする．フィーチャモデルは共通フィー
チャと可変フィーチャをツリー構造にしてモデル化するこ
とで作成される．
ソフトウェアは可変フィーチャのうちで選択されたフィー

チャと共通フィーチャから成る．フィーチャモデルにおい

図 2 振る舞いのモデルのメタモデル
Fig. 2 The metamodel of the behavior model

て，各可変点で選択されたフィーチャによって生成される
選択性のない一つのツリーがソフトウェアの持つ全ての
フィーチャを持ち，全ての振る舞いを表現する．本論文で
提案する手法で開発するソフトウェアではこの選択性のな
い一つのツリーが一つの振る舞いのバリエーションを表現
することになる．

3.3 ExecutableUMLモデルの設計
ExecutableUMLモデルの設計について説明する．ソフ

トウェアの機能を実現する振る舞いのモデルと消費電力状
況をモニタリングするモデルを ExecutableUMLモデルの
ステートマシン図で記述する．モニタリングするモデルで
は消費電力状況を取得する周期的な振る舞いを設計する．
振る舞いのモデルでは，可変点毎に自己適応に必要なス
テートを設ける．必要なステートは，消費電力状況からバ
リエーションを判断するステートと選択されたステートへ
の遷移を行うステートである．バリエーションを判断する
ための情報は次項 3.4で説明する方法でモデルに追記する．
設計する二つのステートマシン図は実行時には非同期で並
列に動作する．図 2に振る舞いのモデルの設計のメタモデ
ルを示す．また，以下に ExecutableUMLモデル作成にお
ける操作の流れを述べる．操作 (1)～(3)は振る舞いのモデ
ルの設計操作について説明しており図 2中の番号に対応し
ている．
(1) フィーチャモデルに設計したソフトウェアの振る舞い

をステートに割り当て，遷移先のステートの違いでバ
リエーションの違いを表現．

(2) バリエーションを表現するステート群の前に選択され
たバリエーションのステートへの遷移を扱うステート
を設置．

(3) (2)で追加したステートの前に，消費電力状況を参照
しバリエーションの判断を行うステートを設置．

(4) モニタリングモデルとして周期的な振る舞いを行うス
テートマシン図を記述．

(5) モデルの振る舞いが想定した動作であるかを検証．

図 3 モデルベース消費エネルギー解析手法の全体像
Fig. 3 Overview of Model-based Energy Analysis Method

3.4 消費電力情報付き ExecutableUMLモデルの生成
消費電力情報付き ExecutableUMLモデルの生成につい

て説明する．消費電力情報付き ExecutableUMLモデルは
モデルベースの消費エネルギー解析手法を用いて推定した
推定消費電力を作成した ExecutableUMLモデルに追記す
ることで生成する．
モデルベースの消費エネルギー解析手法 [7] は，Exe-

cutableUMLを用いてモデルベースでステートごとの粒度
で消費エネルギーを推定することができる手法である．図
3にモデルベース消費エネルギー解析手法の全体像を示す．
この手法では，ExecutableUMLモデルのステートマシン
図にリソース消費量を書き加え，これをもとに消費電力モ
デルからステートごとの消費エネルギーを推定する．文献
内で消費エネルギー推定に用いられている電力モデルを以
下に示す．

Power(A) = 0.3819 + 0.0003× CPU(%)

+ 0.0071×Wi-Fi(MB/sec)
(1)

電力モデル 1にはパラメータとしてCPU使用率とWi-Fi

通信量の二つを用いている．図 3に記述されている consは
そのステートでの (CPU使用率,Wi-Fi通信量)を表してい
る．設計時にステートマシンのレベルでの消費エネルギー
推定ができるため，どの振る舞いでどれだけのエネルギー
が消費されているかのボトルネックを設計時に発見するこ
とができる．この手法による推定では，平均誤差 9.0%の
精度で消費エネルギーを推定することが可能である．
本論文ではこの手法を用いてモデル設計の段階で振る舞

いの各バリエーションの消費電力を推定する．推定値は振
る舞いの変更の基準として使用するためにExecutableUML

モデルに追記し消費電力情報付き ExecutableUMLモデル
とする．

3.5 フィーチャとステートの紐付け
フィーチャとステートの紐付けについて説明する．本手

法では，ソフトウェアの機能をフィーチャとして機能の振
る舞いをステートマシン図で設計する．作成したフィー

図 4 実行時の振る舞い
Fig. 4 Runtime behavior

チャモデルと消費電力情報付き ExecutableUMLモデルを
それぞれの構成要素で紐付けて新たに ExecutableUMLモ
デルを生成する．
フィーチャとステートの紐付けには可変点付き状態遷移

図を用いる．可変点付き状態遷移図は可変性をガード条件
で表現することでフィーチャの活性・不活性によって変わ
る状態遷移の有無を表現する．フィーチャモデルでは，ツ
リーの可変点から一つずつフィーチャを選択することで一
つのバリエーションを表現する一つのツリーが得られる．
また，可変点付き状態遷移図では，状態遷移に付随する
ガード条件によって選択されたフィーチャに依存する状態
遷移のみが有効になる．これらのことから，バリエーショ
ンが存在する状態遷移図が一つのバリエーションにしか遷
移し得ないようになる．結果として，フィーチャモデルに
おいて選択されたフィーチャに依存する状態遷移のみが有
効な状態遷移図が作られる．一つのフィーチャツリーと一
つの状態遷移図が一対一で対応することになりフィーチャ
とバリエーションのステートは紐付けされたと言える．生
成されたフィーチャ依存遷移付き ExecutableUMLモデル
はモデル駆動開発における自動コード生成を用いてソース
コードへと変換される．

3.6 実行時の振る舞い
提案手法によって開発されたソフトウェアの実行時の振

る舞いについて説明する．実行時には端末上の消費電力状
況を取得しながら振る舞いを変更する．実行時の振る舞い
変更は事前に見積もったバリエーション毎の消費電力の情
報を基に行われ，実行時に要求される最大消費電力以下で
最大のパフォーマンスで動作するバリエーションが選択さ
れる．実行時の振る舞い変更のイメージを図 4に示す．
図 4では，バリエーション Bの方が消費電力が大きく高

パフォーマンスなバリエーションである．バリエーション
Aと Bは消費電力とパフォーマンスについてトレードオフ
の関係がある．参照した消費電力状況から，バリエーショ
ン Aで実行中の端末がバリエーション Bで実行しても問

図 5 電力状況の取得とバリエーションの変更
Fig. 5 Power situation acquisition and variation change

題ないと判断した場合にバリエーション Bへと自身の振る
舞いを変更する．また，バリエーション Bで実行中に他の
ソフトウェアの消費電力の増大などの原因で端末の消費電
力が増大し，バリエーション Bでの実行に問題があると判
断した場合，バリエーション Aへと変更するでことで最大
消費電力を削減する．

3.7 電力状況の取得とバリエーションの変更
提案手法によって実行時に振る舞いを変更するために

は，実行時に端末の消費電力を取得しバリエーションを変
更する必要がある．また，それを実現する機構を設計時の
ExecutableUMLモデルに埋め込む必要がある．本項では
実行時の消費電力状況の取得方法とバリエーションの変更
方法について説明する．
電力状況の取得はモニタリングのステートマシン図に記

述される．取得動作はソフトウェアの振る舞いと非同期で
周期的に行われ，ソフトウェアの振る舞いのステートマシ
ンと電力状況を取得するステートマシンは並列で実行され
る．実行時の消費電力状況は，周期的実行における前回の
実行から消費されたリソース消費量からモデルベースの消
費エネルギー解析手法を用いて取得される．
バリエーションの変更は可変点ごとに行われる．バリ

エーションの決定は，最新の消費電力状況を参照し，これ
からバリエーションを判断する関数によって行われる．バ
リエーション判断関数は消費電力状況から，要求される最
大消費電力を超えずに最大のパフォーマンスを発揮するバ
リエーションを選択する．図 5 に電力状況の取得とバリ
エーションの変更を行うステートマシン図を示す．

4. 評価
本節では，提案手法を用いて開発したソフトウェアにつ

いての評価を述べる．評価環境，評価項目，評価手順につ
いて説明した後，本実験で評価するソフトウェアとテスト
プログラムの仕様を説明し，最後に評価結果について述べ
る．評価ソフトウェアの作成には以下の式 2を消費電力モ

表 3 評価環境
Table 3 Evaluation environment

種類 機器名
端末 Raspberry Pi Model B+

電流計 Agilent 34411A 61/2 Digit Multimeter

電源装置 HEWLETT PACKARDE 3616A DC

POWER SUPPLY

拡張ボード Grove Pi+

センサモジュール Grove - Temperature Sensor v1.2

デルとして使用した．消費電力モデルは文献 [7]を参考に
線形モデルを選択した．消費電力モデルの各パラメータを
新たに設定するため，それぞれに対して段階的に変化させ
るプログラムを実行してデータを取得した後，最小二乗法
による線形回帰で決定した．

Power(A) = 0.279 + 0.0007× CPU(%)

+ 0.0071×Wi-Fi(MB/sec)
(2)

本評価では評価ソフトウェアが端末の消費電力状況を取
得することができ，取得した情報を用いて振る舞いを変更
することができることと振る舞い変更の精度に着目して評
価を行う．

4.1 評価環境
表 3に示す環境で評価を行った．Raspberry Piには電

源装置と電流計と接続して測定を行った．センサモジュー
ルは Raspberry Piと接続した Grove Pi+のアナログ端子
に接続する．評価実験 1 と評価実験 2 は同じ評価環境で
行った．
本実験では評価するソフトウェアのモデリングをBridge-

Point[8]で行った．BridgePointはExecutableUMLの方法
論を取り入れたツールで，記述したモデルをモデルのまま
動作させて検証することが可能である．モデルからコード
の自動生成を行うことができモデル駆動開発におけるツー
ルとして活用されている．
BridgePointでは，ExecutableUMLの方法論によって記

述されたクラス図のうち状態を持つものにステートマシン
図を記述する．また，ステートマシン図のステートのうち
ステート内で振る舞いがあるものは専用のアクション言
語を用いて詳細な振る舞いを記述できる．アクション言語
は抽象度の高い言語であり，変換先のソースコードの種類
によらない．モデルは Bridgeや Functionを用いて外部の
コードと接続することが可能である．本研究ではアクショ
ン言語やBridge，Functionを用いて完全なモデル駆動開発
を行うことが可能であると考え BridgePonintを開発ツー
ルとして採用した．

表 4 評価項目
Table 4 Evaluation item

項目 内容
応答時間 消費電力状況の変化からバリエーション変更

までの時間
ミス頻度 消費電力状況に合わないバリエーション変更

の 1 秒あたりの回数
修正時間 ミスの発生からあるべきバリエーションへの

変更の時間
適応率 正しいバリエーションである時間的割合
推定誤差 消費電力推定の相対誤差
オーバーヘッド 自己適応性を持つことによる消費電力上昇率

4.2 評価項目
本評価実験における評価項目について説明する．提案手

法によって開発されるソフトウェアには消費電力状況に対
してより正確でより高速な適応が求められる．また，自己
適応機能を付加したことでソフトウェアの消費電力は上昇
すると考えられる．これらの要求から表 4に示す 6項目に
ついて評価を行った．応答時間，ミス頻度，修正時間，適
応率，消費電力推定の 5項目については評価実験 1で評価
を行い，オーバーヘッドについては評価実験 2で評価を行
う．評価項目のミスの発生は消費電力推定の誤推定によっ
て消費電力状況を正しく推定できなかった場合に発生する．

4.3 評価手順
評価実験 1と評価実験 2の評価の手順を説明する．

4.3.1 評価実験 1

評価実験 1の手順を示す．消費電力は Raspberry Piに
電流計を接続して電流値を測定し，バリエーションは変更
が発生した時の実行時間を記録する．
(1) 提案手法に従ってモデルからコードを生成し実験環境

へ転送．
(2) CPU使用率を変化させる実験用ソフトウェアを実行

した状態で評価ソフトウェアを実行．
(3) 実行時の電流値の測定値，推定値とソフトウェアのバ

リエーションを記録．
(4) 実行時の消費電力からバリエーション変更が発生すべ

き時刻を求め，記録した時刻と比較し評価項目 1から
4を評価．

(5) 測定値と推定値を比較し消費電力推定誤差を評価．
4.3.2 評価実験 2

評価実験 2の手順を示す．評価実験 1で生成された評価
ソフトウェアを用いる．
(1) 評価実験 1と同様に，実験環境へコードを転送．
(2) 自己適応機能を持たないソフトウェアを実行しその時

の電流計の測定値を記録．
(3) 評価ソフトウェアをバリエーションが変更しないよう

に単体で実行した時の電流計の測定値を記録．

図 6 フィーチャ図
Fig. 6 Feature diagram

図 7 評価ソフトウェアの消費電力
Fig. 7 Power consumption of the evaluation software

(4) 二つの測定値の記録を比較し消費電力の上昇率を評価．

4.4 実験に用いるソフトウェア
評価実験 1では提案手法を用いて開発された評価対象ソ

フトウェアと，端末上の消費電力状況を変化させるために
CPU使用率を変化させるテストプログラムを用いる．そ
れぞれのソフトウェアの仕様を述べる．
4.4.1 評価対象ソフトウェア
評価ソフトウェアは温度センサによるセンシングを行

う．Raspberry Piの消費電力をコンテキストとして自己適
応を行い，適応のバリエーションとしてセンシング間隔を
扱う．評価ソフトウェアは 1秒，3秒，5秒の三種類のセ
ンシング間隔をバリエーションとして持つ．三種類のバリ
エーションの閾値には 0.29(A)と 0.31(A)を設定した．図
6に評価ソフトウェアのフィーチャ図を示す．
評価ソフトウェアのバリエーションを変更させずに，セ

ンシング間隔を 3秒間隔で実行した時の消費電力を図 7に
示す．

図 8 テストプログラムの消費電力
Fig. 8 Power consumption of the test program

4.4.2 テストプログラム
評価ソフトウェアがコンテキストとして取り扱う端末の

消費電力を変化させるために CPU使用率を変化させる．
これは図 4に示す「ソフトウェア以外で消費される電力」
の部分を変化させるためのソフトウェアである．
評価実験に用いた電力モデルでは CPU使用率とWi-Fi

通信量をパラメータとしているが，テストプログラムは端
末の消費電力を変化させることを目的としたプログラム
であるため，簡単のために CPU使用率のみを変化させて
いる．
評価ソフトウェアが三つのバリエーションを持つため．

テストプログラムは 0.2秒間の平均電流値を三段階に変化
させそれぞれ 2秒ずつ実行する．図 8にテストプログラム
を単体で実行した時の消費電力を示す．

4.5 評価結果
本項では評価実験の結果を述べる．表 5 に表 4 の評価

項目の評価結果を示す．実験の結果，応答時間は平均で
0.22秒であった．テストプログラムを 80秒実行する間の
ミスは 11回であり，ミスに対する修正時間は平均 0.20秒
であった．消費電力状況に対して想定するバリエーション
である時間的割合は全体として 87.6%であった．実験時の
消費電力に対する消費電力推定の相対誤差は平均 1.52%で
あった．実験時の実測消費電力と推定消費電力の比較を図
9に示す．提案手法を用いて自己適応性を持つことによる
オーバーヘッドを評価した．評価ソフトウェアと自己適応
性を持たないセンシングソフトウェアを実行した時の消費
電力をそれぞれ測定し比較したところ，ソフトウェアの消
費電力の上昇率は 2.12%であった．図 10にオーバーヘッ
ドの評価結果を示す．
評価結果から，適応率は 87.6%であり適応性能は十分で

あると考える．適応性能を追加したことによる消費電力の
オーバーヘッドは 2.12%で，許容範囲内のオーバーヘッド
である．

表 5 評価結果
Table 5 Evaluation result

評価項目 評価結果
応答時間 (sec) 0.22

ミス頻度 (回/sec) 0.14

修正時間 (sec) 0.20

適応率 (%) 87.6

推定誤差 (%) 1.52

オーバーヘッド (%) 2.12

図 9 実行時の実測値と推定値の比較
Fig. 9 Comparison between actual value and estimate at run-

time

図 10 評価ソフトウェアのオーバーヘッド評価
Fig. 10 Evaluation of overhead

5. おわりに
はじめに，組込みシステムにはハードウェアに制限があ

ることが多くこの制限にともなって稼働時間の要求を満た
すため消費電力削減の必要があるという背景を述べた．し
かし、消費電力とサービス品質にはトレードオフがありこ
れらの両立の要求がソフトウェア開発に存在する．消費電
力とサービス品質の両立を達成するために，周囲の状況に
応じて実行時に振る舞いを変更できる自己適応ソフトウェ
アを利用すること述べた．しかし，既存のモデルベースに
よる自己適応ソフトウェアは端末の消費電力のように実装
に近い情報を対象に適応することができないという問題が
あった．これはモデルという上流段階で電力についての情
報を取り扱うことができなかったからであった．そこで本
論文ではモデルベースの消費電力推定手法を用いてモデル

の段階で電力についての情報を取り扱うことができるよう
にし，モデルベースで消費電力自己適応型ソフトウェアを
開発する手法を提案した．本手法では適応のバリエーショ
ンを選択性のあるフィーチャとしてソフトウェアプロダク
トラインの手法を取り入れ，フィーチャモデルと UMLモ
デルを紐付けた．択一のフィーチャの活性・不活性によっ
てソフトウェアの振る舞いを決定し，実行時には端末の消
費電力をコンテキストとして自己適応を行うことが可能で
ある．この手法によって要求される最大消費電力で実行す
るとともにサービス品質を維持することができ消費電力と
サービス品質の両立が可能である．
BridgePointを用いてモデル図の作成を行い提案手法に

よって開発したソフトウェアを端末の消費電力を変化させ
るテストプログラムと同時に実行して評価を行った．評価
の結果，平均応答時間 0.22秒，適応率 87.6%であり消費電
力推定の平均誤差は 1.52%という結果が得られた．また，
自己適応機能を付加したことによるオーバーヘッドを評価
したところ消費電力の上昇率は 2.12%であった．
本研究における今後の課題として，以下のようなものが

考えられる．
• 応答速度，適応率の向上
• 可変点を複数持つソフトウェアでの評価
• 消費電力とパフォーマンスのトレードオフ関係の最
適化

• オプションフィーチャと UMLモデルの紐付け

参考文献
[1] F．D．Maćıas-Escrivá，R．Haber，R．del Toro，and V．

Hernandez，”Self-adaptive systems: A survey of current
approaches, research challenges and applications,” Expert
Systems with Applications 40．18，pp.7267-7279，2013．

[2] J．A．Estefan，”Survey of model-based systems engineer-
ing (MBSE) methodologies,”Incose MBSE Focus Group
25．8，2007．

[3] K．Pohl，G．Böckle，and F．J．van der Linden，”Soft-
ware Product Line Engineering: Foundations, Principles
and Techniques,”Springer-Verlag ，2005．

[4] S．J．Mellor，M．Balcer，and I．Jacoboson，”Executable
UML: A foundation for model-driven architectures,
“ Addison-Wesley Longman Publishing Co., Inc.，2002．

[5] G．H．Alfred，V．Pelechano，R．Mazo，C．Salinesi，and
D．Diaz，”Dynamic adaption of service compositions with
variability models,” The Journal of Systems and Soft-
ware，pp.24-47，2014．

[6] V．R．Basili，G．Caldiera，and H．D．Rombach，”Goal
question metric paradigm,” Encyclopedia of Software En-
gineering 1，pp.528-532，1994.

[7] R. Yoshimoto, T. Kadono, K. Hisazumi, and A.
Fukuda, ”A Software Energy Analysis Method Using Ex-
ecutableUML,” IEEE TENCON 2016, pp.218-221, 2016.

[8] BridgePoint ホームページ，https://xtuml.org/(最終アク
セス日 2017/2/9)

