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Abstract—Recently, WLAN-based wireless sensing technolo-

gies, which utilize WLAN devices widely used in many envi-

ronments, have been focused because of their low deployment

cost. We have presented an outdoor human detector using

IEEE 802.11ac channel state information (CSI) for line-of-sight

(LOS) scenarios in our previous work [1]. In this paper, we

extend our previous work and present a CSI-based human

detection system for outdoor non-line-of-sight (NLOS) scenarios.

The key idea is to utilize CSI retrieved by multiple devices

and extracted key features using principal component analysis

(PCA) for sensing to avoid unstable detection performance.

Experimental evaluations revealed that our human detection

system for NLOS scenarios successfully located a human with

an accuracy of 99.58 % using four WLAN stations.

Index Terms—WLAN sensing, channel state information (CSI),

outdoor human detection, principal component analysis (PCA).

I. INTRODUCTION

Recently, wireless local area network (WLAN) based sens-
ing technologies have been focused due to their low deploy-
ment cost. The WLAN sensing utilizes WLAN devices already
installed in environments to monitor changes in a radio prop-
agation environment by analyzing channel state information
(CSI) defined in the WLAN standard [2]. While many papers
have reported IEEE 802.11n CSI-based sensing technologies
such as human localization and gesture recognition in an
indoor environment [3]–[15], none of them have been adopted
to outdoor environments. The number of multipaths becomes
smaller in an outdoor environment, which puts difficulties in
human location/activity recognition because of limited influ-
ence on wireless signals by human.

We have developed an IEEE 802.11ac CSI-based outdoor
human detector [1]. The human detector retrieves 802.11ac
CSI and perform multi-class classification using deep neural
network (DNN) based supervised machine learning to locate
the human in a sensing target area. The 802.11ac CSI, consists
of amplitude and phase angle information for each WLAN
orthogonal frequency division multiplexing (OFDM) subcar-
rier. We experimentally demonstrated that our human detector
successfully located a human with an accuracy of 99.86 % in
a line-of-sight (LOS) environment.

Our human detector, however, suffers from unstable detec-
tion performance depending on the location of CSI measuring
stations. Moreover, we evaluated the human detector only in
a LOS environment. The WLAN devices are often installed
in non-line-of-sight (NLOS) environments in practical outdoor
scenarios. Radio propagation model in an outdoor NLOS envi-

ronment is completely different from the propagation model in
an outdoor LOS environment, which highly affects the human
detection performance. The NLOS environments increase the
number of multipaths compared to LOS environments, which
is not always true in outdoor environments.

We therefore present an outdoor human detection system
for NLOS environments. The key idea is to utilize CSI from
multiple CSI measuring stations and to extract key features
for machine learning. CSI derived in outdoor environments
includes much redundancy due to the small influence on dif-
ferent subcarriers from humans. We extract key features using
principal component analysis (PCA) over CSI from multiple
stations to increase training efficiency. Experimental evaluation
in our university campus with four CSI measuring stations
revealed that our outdoor NLOS human detection system
successfully located human with an accuracy of 99.58 %.

The rest of the paper is organized as follows. Section II
presents our outdoor NLOS human detection system, followed
by experimental evaluations in Section III. Section IV summa-
rizes the paper.

II. WLAN-BASED OUTDOOR NLOS HUMAN DETECTION
SYSTEM

Figure 1 shows a system overview of the IEEE 802.11ac
WLAN-based outdoor human detection system. The human
detection system consists of data acquisition, pre-process, and
machine learning block, which is the same as our previous
system. We update the pre-process block with PCA to extract
key features from CSI retrieved by multiple CSI measuring
stations, as shown in Fig. 1b. The machine learning block
performs supervised multi-class classification, which requires
training prior to system use.

Each block is described in the following subsections.

A. Data Acquisition Block

The data acquisition block collects CSI from multiple
WLAN stations named CSI measuring stations using a WLAN
CSI monitoring system [16]. The data acquisition block con-
sists of a WLAN access point (AP), CSI measuring stations,
and CSI monitoring station, as shown in a left block in Fig. 1a.
A WLAN AP and CSI measuring stations exchange CSI,
i.e, beamforming report, using the IEEE 802.11ac sounding
protocol. We install multiple CSI measuring stations in a
sensing target area and collect CSI using a CSI monitor-
ing station by capturing beamforming report messages. The
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Fig. 1. System overview of WLAN-based outdoor NLOS human detection:
(a) whole system and (b) structure of pre-process block.

captured CSI is compressed angle information � 2 [0, 2⇡)
and  2 [0,⇡/2) for each OFDM subcarrier [17]. � and  

indicate the difference of relative phase and amplitude between
antennas, respectively.

B. Pre-Process Block

The pre-process block is responsible for four data process-
ing: elimination of phase rotation, low-pass filtering, dimen-
sion reduction, and normalization.

The pre-process block first removes the influence of phase
rotation in � angle. The angle � is in a range of [0, 2⇡),
implying that � ' 0 and � ' 2⇡ are the almost same angle.
To handle such similarity of � angles, we use sin� and cos�
instead of � as features for machine learning.
cos� and sin� data as well as  are then passed to a low-

pass filtering process. The CSI data is highly sensitive to small
environmental changes including sways of trees. We therefore
apply a simple moving-average low-pass filter (LPF) over one-
second CSI data.

To extract key features from CSI measured on multiple
stations, PCA is applied to the low-pass-filtered angle informa-
tion. CSI data includes much redundancy especially in outdoor
environments because of the limited number of multipaths
resulting in small CSI difference between subcarriers. We
apply PCA and reduce the input dimension of a machine learn-
ing block, which increases training efficiency. The extracted
component data is normalized by the min-max normalization
algorithm and is passed to a machine learning block.

C. Machine Learning Block

The machine learning block locates a human by a supervised
multi-class classifier. We don’t limit the classification algo-
rithm. In this paper, we implemented a deep neural network
(DNN) based multi-class classifier as an example.

Figure 2 shows the architecture of the DNN we imple-
mented. The DNN has two fully-connected hidden layers as
well as input and output layers. The number of neurons in each
hidden layer is set to be the number of principal components.
We implemented the DNN with Keras/TensorFlow framework.
Dropout [18] and Early Stopping [19] were employed in the
model training.
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Fig. 2. Architecture of DNN for human detection
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III. EVALUATION

A. Experiment Setup

Figure 3 shows the experiment environment. To evaluate
the performance in an NLOS environment, the experiment
was conducted where there were multiple pillars and walls
around a sensing target area. As shown in Fig. 3, four Galaxy
S7 edge CSI measuring stations (STAs) were installed right
behind the pillars. A testbed WLAN AP and Intel Compute
Stick STK2m364CC CSI monitoring station were installed in
the center of the sensing target area. 312 angle information
(= 6 angles⇥52 subcarriers) was collected with four antennas
on AP and one antenna on each of the four STAs.

The target area was divided into 11 sub-areas labeled from
1 to 11. The CSI data was collected at a sampling rate of
100 Hz for 60 seconds while a human was randomly walking
in each area. We also collected CSI data with no human in
the target area, labeled as 0.

B. Detection Performance

We first evaluated the effect of multiple CSI measuring
stations. We performed 10-fold leave-one-out cross validation
with randomly shuffled data for 10 times. In each trial, nine-
tenths data was used for training and one-tenth data was used
for evaluation. The DNN in a machine learning block was



TABLE I
SENSING ACCURACY

CSI measuring stations Accuracies w/o PCA
STA1 66.76 %
STA2 91.17 %
STA3 91.15 %
STA4 94.44 %

4 STAs 95.58 %

trained as a 12-class classifier with labels from 0 to 11.
We checked the capability of the system with data from the
experiment. The model was re-trained in each cross-validation
trial. In this evaluation, we omitted the PCA process.

Table I shows Accuracies of the detection performance
using CSI derived from STA1–STA4 and 4 STAs. The “4
STAs” indicates that the detection system used CSI from
all the four STAs. Table I demonstrates that the human
detection using 4 STAs outperformed the detection using one
CSI measuring station. Detection with single station exhibited
unstable detection performance dependent on stations, while
4 STAs successfully removed the performance degradation.

C. PCA Performance

We next evaluated the effect of PCA in the detection perfor-
mance. We evaluated detection performance using CSI derived
from 4 STAs while changing the number of extracted principal
components in a pre-process block. The detection performance
was evaluated via 10-fold leave-one-out cross validation for
three times for each number of principal components.

Figure 4 shows detection accuracy as a function of the
number of principal components. Each CSI measuring station
provides 468 dimensional CSI data after the elimination of
phase rotation. The original dimension of 4-STA CSI data
is therefore 468 ⇥ 4 = 1872. Figure 4 indicates that the
accuracy increased as the number of principal components
(PCs) increased and became maximum at 250 PCs. When the
number of PCs was greater than 250, the detection accuracy
slightly reduced as the number of PCs increased. The detection
accuracy was 99.58 % when 250 PCs were used. Compared
to the accuracies shown in Table I, we can confirm that PCA
successfully improved the detection accuracy.

Figures 5 and 6 shows confusion matrices of area detection
using 4-STA CSI without and with PCA, respectively. The
figures show the detection results of 10-fold leave-one-out
cross validation performed for 10 trials. A table in Fig. 5
indicates that areas 2, 4, and 8 were often mistakenly detected.
Irrelevant CSI components for detecting the target object, i.e, a
human, might have deteriorate the DNN model without PCA.
With PCA, the detection performance was improved in these
areas. With the limited number of principal components, we
could emphasize the CSI changes affected by a human.

IV. CONCLUSION

In this paper, we presented a IEEE 802.11ac WLAN CSI-
based outdoor human detection system for NLOS environ-
ments. We retrieve CSI, i.e, radio propagation environment
information, from multiple WLAN devices and perform DNN-
based multi-class classification to locate a human in a target

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700
Number of PCs

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

A
cc
ur
ac
y

Fig. 4. Sensing accuracy for the number of principal component
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Fig. 5. Detection result using 4STAs without PCA
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Fig. 6. Sensing result of 4STAs with PCA

area. We also employed PCA to extract key features for the
machine learning to avoid unstable detection performance de-
pendent on CSI measuring devices. We evaluated our detection
system in an outdoor NLOS environment and demonstrated
that the outdoor human detection system successfully located
a human within 12 sub-areas with an accuracy of 99.58 %.
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