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Abstract. Accidents between trains and vehicles at railroad crossing
is one of the most common train accidents in Japan. To prevent rail-
road crossing accidents, we need to detect both trains and vehicles. In
this paper, we propose an acoustic train and vehicle detection system
that shares a microphone array to detect trains and vehicles. In our pre-
vious work, we have developed a vehicle detection system using stereo
microphones. Here we present a train detection system using a micro-
phone. The train detection system analyzes frequency components of the
sound signals acquired by a railside microphone. We calculate probabil-
ity of train passing using logistic regression model and apply a hysteresis
thresholding with two thresholds to detect train passing. Simple filter-
ing based on train length is also applied to increase robustness to noise
including vehicle passing sounds. We conducted initial evaluations and
confirmed that our train detection system successfully detected trains
with an F-measure of 0.987 and Recall of 1.0.
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1 Introduction

Train is fast and large-capacity transportation, which plays an important role
in modern society. Railroad accident cause not only human damages but also
social problems such as train delay. It is essential to prevent railroad accidents.
An accident between a train and vehicle at railroad crossing is one of the most
common train accidents in Japan. There were a total of 242 railroad crossing
accidents in Japan in 2015 [1].

In order to prevent the railroad crossing accidents, we need to detect both
trains and vehicles. For train detection, we can categorize the train detection sys-
tem into two types: on-board installation and railway installation types. Typical
examples of the on-board installation type are based on GPS (Global Position-
ing System) or tachograph that records moving distance from a reference point.
Typical example of the railway installation type is based on a track circuit, which
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is used for railway signaling control. For vehicle detection, ultrasonic sensors, in-
frared sensors, and loop coils have widely installed. These sensors might be used
on a railroad crossing.

These detection systems, however, are separately installed, which implies
that we need multiple systems to simultaneously detect trains and vehicles on
a railroad crossing. We need a new low-cost approach that detects both trains
and vehicles using a single sensor to apply the detection system in rural areas.

We are developing a train and vehicle acoustic detection system that shares a
microphone array to detect both trains and vehicles. The system analyzes sound
signals of both trains and vehicles derived by a microphone array near a railroad
crossing to detect trains and vehicles. Microphone is a cost-e�ective device, which
places few physical restrictions on installation location of the detection system
because sound signals are di�racted over obstacles.

In this paper, we present a train detection system using a microphone because
we have developed a vehicle detection system using stereo microphone in our
previous work [3, 2]. Our train detection system analyzes frequency components
of the sound signals acquired by a railside microphone. We calculate probability
of train passing using a logistic regression model on the frequency components.
Regression coe�cients are trained prior to system use. Finally, the system applies
hysteresis thresholding with two thresholds to detect train passing.

To demonstrate the basic performance of our train detection system, we
conducted experimental evaluation. We installed a microphone at a house nearby
railway and recorded train passing sound for approximately 7.5 hours. The sound
signals were then analyzed using our train detection system to detect passing
trains. We confirmed that the train detection system successfully detected trains
with an F-measure of 0.99 and a recall of 1.0.

The rest of this paper is organized as follows. Section 2 describes existing
methods of train detection with their problems. Section 3 briefly introduces train
and vehicle detection system and Section 4 describes our proposed train detection
system. In Section 5, we conduct experimental evaluations to demonstrate the
basic performance of our system, and Section 6 concludes the paper.

2 Related Works

To the best of our knowledge, train and vehicle simultaneous detection system
is novel in both fields of train and vehicle detections. In this section, we briefly
look through related works on train detection and vehicle detection.

2.1 Train detection

Train detection system is categorized into two types: on-board and railway in-
stallation types. Both types su�er from high installation and operation costs.

The methods using a tachograph and satellite positioning system are cat-
egorized an on-board installation type. Distance from a reference point is cal-
culated using tachograph output. The reference points are measured using IC
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tags installed along the railway [5]. Satellite positioning systems, including GPS
(Global Positioning System) and GNSS (Global Navigation Satellite System),
provide current train location calculated from radio signals from satellites [7, 4].
The on-board detection systems su�er from a communication problem: reliable
communication between train and ground is mandatory. The satellite-based on-
board detection systems are a�ected by wireless communication: performance
degrades in a tunnel, for example, because we receive no satellite signals in a
tunnel.

The train detection methods using track circuits or axle counters are catego-
rized into a railway installation type. A track circuit is an electrical circuit using
wheels and axle of a train, and tracks separated by insulators forming track sec-
tions. When a train passes through a section, the circuit is electrically shorted
out, which indicates the presence of passing train in the section. An axle counter
detects train passing when a train passes over an axle counter installed on a
railway. The railway installation type requires high cost for installation because
of railroad work, which sometimes disturbs train service.

2.2 Vehicle detection

Existing roadway vehicle detection systems are based on an infrared sensor, laser
radar, loop coil, and stereo camera.

Vehicle detection system using an infrared sensor at a railroad crossing in-
stalls infrared transmitter and receiver across a railway to avoid device instal-
lation in a crossing. The receiver output explicitly indicates passing trains as
trains shut out the infrared light. The infrared-based approach highly a�ected
by weather condition and dust, degrading detection accuracy or resulting in
failures.

Loop coils utilize magnetic field change caused by vehicle passing to detect
vehicles. Loop coils come with high installation cost due to roadwork to embed
loop coils under a road surface. In addition, loop coils have small sensor coverage,
so that fails in accurate detection of small vehicles.

A laser-radar-based system transmits laser light into a railroad crossing and
analyze the reflected light to detect vehicles. To detect vehicles in multiple lanes,
we need multiple laser radar sensors installed above a railroad crossing, which
results in high installation cost for safety installation as to prevent falling.

A stereo-camera-based system analyzes stereo camera image to detect ob-
stacle in a railroad crossing [6]. However, installation is restricted due to power
supply problem, i.e., two high-power cameras consumes much power as they
are always turned on. In addition, detection accuracy degrades for high-speed
vehicles at night.

3 Train and Vehicle Detection System

Figure 1 illustrates an overview of train and vehicle detection system. The detec-
tion system consists of two microphones followed by a low pass filter (LPF), vehi-
cle detection system, and train detection system. Two microphones are installed
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Fig. 1. Overview of train and vehicle detection system

beside a railway crossing and collect audio data of train and vehicle passing.
After applying a LPF to reduce high frequency environmental noise, the vehicle
and train detection systems share and analyze the audio data to detect vehicles
and trains, respectively. The vehicle detection system uses two microphones and
utilize time di�erence of arrival of vehicle sound to estimate where vehicle is
running. Train detection system uses one microphone and analyzes frequency
components of the sound to detect train passing.

We have developed an acoustic vehicle detection system in our previous
work [3, 2]. The system draws a “sound map”, which is a map of time di�er-
ence of sound arrival on two microphones. The time di�erence is calculated from
a cross correlation function of the sound data acquired on the two microphones.
Although the system is not tested at a railroad crossing, we confirmed that the
system detected vehicles with an F-measure of 0.92. We also confirmed that the
types of vehicles have small influence on detection accuracy because the detection
is based on vehicle running sound.

We present a train detection system in the following section.

4 Train Detection System

Figure 2 illustrates an overview of the train detection system. The train detec-
tion system consists of predict and detect blocks to analyze the sound signals
acquired from a microphone installed by a railway crossing. The LPF (low pass
filter) is applied prior to the analysis to reduce the influence of high frequency
environmental noise. The predict block calculates probability of train existence
based on frequency components of sound signals acquired from the microphone.
Then the thresholding is applied on train existence probability to predict the
presence of a passing train. The detect block calculates MA (moving average)
over the output of predict block and applies hysteresis thresholding with two
thresholds to detect train passing.

Details of each block is described in the following subsections.
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Fig. 2. Overview of train detection system

4.1 Predict block

Predict block consists of training and predicting phases because the block uses
logistic regression, which is one of machine learning methods.

In a training phase, regression coe�cients of logistic regression are trained
using frequency components of sound signal acquired in advance. In a predicting
phase, logistic regression analysis is performed on the frequency components
of sound signal at each time point using the regression coe�cients obtained
in the training phase to calculate the existence probability of passing trains.
Thresholding is performed to the existence probability to finalize the existence
of passing trains.

Each phase is described in detail below.

Training phase In a training phase, the system trains regression coe�cients
of logistic regression using the training audio data. The ground truth of train
passing is manually derived from video.

As shown in Fig. 2, we use frequency components calculated from fast Fourier
transform (FFT) as feature values. The sound data is divided into fixed time-
width data. FFT is applied to the each divided data to calculate amplitude
of frequency components. Using amplitude of the frequency components, the
system trains the regression coe�cients of logistic regression.

Figure 3 shows an example of the frequency components. As shown in Fig. 3,
the frequency components of the sound of passing train is concentrated on less
than 1000 Hz. Therefore, we use frequency components less than 1000 Hz as
training features.

In a logistic regression analysis for train detection, the system calculates
probability of train existence using the frequency components derived from FFT
as feature value. Probability of train existence is given by

P (Y = 1|X) = 1
1 + e

≠AX , (1)
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Fig. 3. Frequency components of train passing sound

where X = t[1, x1, x2, . . . , xn] is an input vector and A = [a0, a1, a2, . . . , an] is a
regression coe�cient vector.

In a training process, regression coe�cients are calculated by minimizing a
cost function C(A):

C(A) = 1
N

Nÿ

i=1
log P (Y = Yi|Xi), (2)

where {Xi, Yi|i = 1, 2, . . . , N} is a training data set derived from the FFT.

Predicting phase In a predicting phase, the system calculates the existence
probability of passing train using regression coe�cients obtained in the training
phase.

Logistic regression analysis is performed using frequency components calcu-
lated from FFT of sound data. The sound data is divided into fixed time-width
data. FFT is again applied to the each divided data to calculate amplitude of
the frequency component X. Then, the probability of train passing on each time
is calculated substituting the regression coe�cients A obtained in the training
phase and the frequency component X for regression model Eq. (1). Passing
train is detected if the probability is higher than a threshold. The threshold
value is determined in a preliminary experiment, as described in Section 5.2.

Figure 4 shows an example of the result of thresholding. A train passed in
front of a microphone between 22 and 32 seconds. As shown in Fig. 4, the system
successfully detected a passing train.
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Fig. 4. Output example of predict block. 0 and 1 indicate that train exists and no train
exists, respectively.

4.2 Detect block

As shown in Fig. 4, result of logistic regression analysis chatters when train is
approaching or going away. Passing of large vehicle such as a truck sometimes
leads faulty detection.

To reduce such faulty detections, moving average is applied to the output of
predict block prior to apply thresholding. The length of the moving average is set
to approximately 5 seconds based on the time length of train passing. Hysteresis
thresholding is then applied to the output of moving average to finalize the
existence of passing trains. Figure 5 briefly explains a train detection algorithm.
A The blue curve in Fig. 5 represents the averaged probability of train passing. To
detect a passing train, the system detects the train head and tail by hysteresis
thresholding. When the averaged probability exceeds a higher threshold, the
system detects the head of train. And when the averaged probability falls below
a lower threshold, the system detects the tail of train, which implies that a train
have passed.

5 Initial Evaluation

To demonstrate the basic performance of our train detection system, we con-
ducted initial experiment.

5.1 Experiment setup

Figure 6 shows the experiment setup. A microphone was installed in a backyard
of a house near a railway in Itoshima city, Fukuoka, Japan. We collected audio
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Fig. 5. Overview of hysteresis thresholding

data for approximately 7.5 hours. We also collected audio data at a di�erent
location for approximately 3 hours, which was used only for training to evaluate
the influence of di�erence between locations of training and testing. A total of
39 trains were passed in the 7.5-hour testing data, while a total of 17 trains were
passed in the 3-hour training data. Although two microphones were installed as
shown in Fig. 6, we only used one microphone in this paper; the other microphone
would be used in our future work.

The target railway has a single track, implying multiple trains never pass at
the same time. The sound was recorded using a SONY HDR-MV1 recorder with
an AZDEN SGM-990 microphone at a sampling frequency of 48 kHz and word
length of 16 bits. Video monitoring the target railway was also recorded using a
SONY HDR-MV1 video recorder, which was used as ground truth.

We manually labeled training data referring to ground truth, i.e., recorded
video: 1 for train passing and 0 for no train passing. The label 1 is used only when
a train was passing right in front of the microphone. The audio data when train
was approaching and was going away was excluded for evaluation to improve
training accuracy because these cases might include much noise other than train
sound.

We define train passing time tp as the time when the train is passing right in
front of the microphone. Train passing sound is captured from tp = 0 to tp = 5
[seconds]. In a training phase, audio data from tp = ≠5 [seconds] to tp = 0
and from tp = 5 [seconds] to tp = 20 [seconds] was excluded from training data
because the data includes ambiguous sound signals.
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We extracted frequency components less than 1,000 Hz that are passed to a
logistic regression module. Fast Fourier transform (FFT) was performed on 1024
samples at a sampling rate of 48 kHz, we picked 21 points from the FFT results.

Comparing the results derived by our train detection system with video, we
evaluated the number of true positives (TPs), false negatives (FNs), and false
negatives (FNs). TP, FN, and FP are defined as the case that a train was detected
when a train passed, no train was detected when a train passed, and a train was
detected when no train passed, respectively. We excluded true negatives (TNs),
which is defined as the case that no train was detected when no train passed,
because TNs were not countable in our experiment.

Using the numbers of TPs, FNs, and FPs, we also evaluated a precision, a
recall, and F-measure defined as:

Precision = TP
TP + FP , (3)

Recall = TP
TP + FN , (4)

Fmeasure = 2 · Precision · Recall
Precision + Recall . (5)

5.2 Preliminary experiment

To determine a threshold for thresholding of logistic regression described in Sec-
tion 4.1, preliminary experiment was conducted. The threshold was determined
using a ROC (Receiver Operating Characteristic) curve, which is a plot of the
true positive (TP) rate against the false positive (FP) rate at various threshold.
The point that has the shortest distance from upper left corner (0,1) on the ROC
curve gives an optimal threshold.
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Fig. 7. ROC curve with thresholds changed from 0 to 1 in steps 0.01

Table 1. Experiment results

TPs FNs FPs
39 0 1

Precision 0.98
Recall 1.0
F-measure 0.99

We drew a ROC curve using the audio data derived for testing. We per-
formed a 10-fold cross-validation to calculate the TP and FP rates with various
threshold. The sizes of train passing sound data and no train passing sound data
were equalized in testing not to include the influence of training data size.

Figure 7 shows a ROC curve with thresholds changed from 0 to 1 in steps of
0.01. A threshold corresponding to the point that has the shortest distance from
(0,1) was 0.37. We therefore used a threshold of 0.37 in the rest of evaluations.

5.3 Detection accuracy

We evaluated detection accuracy of our train detection system. Logistic regres-
sion coe�cients were derived using 3-hour training sound data and 7.5-hour
sound data was used for evaluation to include the influence of recorded location
di�erence between training and testing. The threshold value of logistic regression
was set to 0.37, as described in Section 5.2.

Table 1 shows evaluation results, i.e., the numbers of true positives (TPs),
false positives (FPs), false negatives (FNs), precision, recall, and F-measure.
Table 1 indicates the following:
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Fig. 8. Regression coe�cients of logistic regression

1. Recall of 1.0 indicates that the train detection system detected all passing
trains without any missed trains. Main purpose of our train detection system
is to prevent accidents. No FN detection is a quite important feature because
FN detection may cause a serious accident.

2. Precision of 0.98 indicates that the train detection system su�ered from the
small number of false positive detections. FP occurred when three motor-
bikes were successively passing near a microphone. Loud sound signals that
partially include frequency components of train sound caused the FP de-
tection. We believe that this type of noise could be excluded when we use
su�cient amount of noise data for training.

3. F-measure of 0.99 indicates that the train detection system exhibited ex-
tremely high detection performance. One cause of this high performance
might be the experiment environment. There was a single railway track in
front of a microphone so that multiple trains never simultaneously passed.
We need to perform an extended experiment to confirm the detection per-
formance in a city area scenario.

The above result reveals that our acoustic train detection system successfully
and e�ectively detected trains.

Figure 8 shows absolute values of regression coe�cients used in logistic regres-
sion corresponding to each frequency component derived by FFT. The absolute
value of regression coe�cient implies the degree of each frequency component
contributing to train detection. We can confirm that higher frequency signals
tend to have higher regression coe�cients; high frequency signals were dominant
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for train detection. Logistic regression successfully extracted train sound using
the regression coe�cients, which provides train detection robust to noise.

6 Conclusion

In this paper, we propose an acoustic train and vehicle detection system. In our
previous work, we developed a vehicle detection system using two microphones.
We therefore focus on an acoustic train detection system in this paper. In our
train detection system, frequency components of train sound are analyzed us-
ing a logistic regression model to calculate the probability of train passing. We
apply a threshold to the probability to detect passing trains. We conducted
experiment evaluations to demonstrate the detection performance of our train
detection system. Experimental evaluations revealed that our train detection
system successfully detected trains with an F-measure of 0.99 and recall of 1.0.
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