
拡張子変更に注目したファイルサーバにおける
ランサムウェアの暗号化攻撃からの回復手法の検討

永野 凜太郎1 稲村 浩2 石田 繁巳2

概要：感染した端末からアクセス可能なファイルを暗号化して使用不能にし，その復号と引き換えに金銭
を要求する暗号化型ランサムウェアが企業を中心に甚大な被害を出している．既存の端末上の暗号化攻撃
を受けたファイルを自動復元する手法では，各端末に対策機構を構築しており管理にコストがかかる．そ
れに対し，データをファイルサーバだけで扱う仕組みにすれば，各端末ごとにデータを保存していた今ま
でと異なり暗号化攻撃の対策対象はファイルサーバのみにできるため，管理コストが減少する．そこで本
研究では，拡張子を特有のものに変更する既知の検体の振る舞いに限定して，ファイルサーバ上のファイ
ルに対する暗号化攻撃のファイル操作をユーザの操作を契機に偽陽性なく短時間かつ自動で特定し，ロー
ルバックする手法を提案する．本稿では暗号化の際にファイル拡張子を特有のものに変更する，ランサム
ウェアの典型的な挙動に則って実装した疑似ランサムウェアを用いて，提案システムに暗号化攻撃した．
暗号化攻撃を受けたファイルを自動で復元したところ，疑似ランサムウェアが行ったファイル操作を短時
間かつ自動で特定し，ロールバックできた．

1. はじめに
感染した端末からアクセス可能なファイルを暗号化する

ことで使用不能にして，その復号と引き換えに金銭を要求
する暗号化型ランサムウェアが流行している [1]．ランサ
ムウェアには暗号化型と画面ロック型があるが，本研究で
は主に暗号化型ランサムウェアをランサムウェアと呼称す
る．ランサムウェアによるファイルの暗号化を暗号化攻撃
と呼ぶ．暗号化攻撃により暗号化されたファイルを復号す
ることは非常に難しいため，ランサムウェアは脅威である．
ランサムウェアによる暗号化攻撃は企業を中心に甚大な

被害を出している [1,2]．例えば，大阪急性期・総合医療セ
ンターにて，電子カルテに関連するデータを暗号化され，
サービス復旧に 60日かかり，被害総額が十数億円以上と
なった事例がある [3]．このように，復旧期間が長くなる
ことによって被害総額が増大する可能性が高くなる．企業
などの組織が暗号化攻撃を受けた際，ファイルを短時間で
復元し，事業を再開できれば被害額が減少する．
既存の端末上の暗号化攻撃を受けたファイルを自動復元

する手法 [4]では，ユーザの正当な操作をランサムウェア
による操作と誤検知する偽陽性の低い検知と高速な自動復
元をしているが，各端末に対策機構を構築すると管理にコ

1 公立はこだて未来大学大学院 システム情報科学研究科
2 公立はこだて未来大学 システム情報科学部

ストがかかる．端末ごとに暗号化攻撃を対策する場合，導
入や更新が負担になる．企業などの組織においては情報技
術の習熟の度合いにばらつきがあることが想定され，構成
員自ら複雑な対策機構を管理することを期待することは難
しい．十分な情報技術を持つ他社に各端末のセットアップ
や更新を依頼する際には多大なコストがかかる．
それに対し，データをファイルサーバだけで扱う仕組み

にすれば，端末ごとにデータを保存していた今までと異な
り暗号化攻撃の対策対象はファイルサーバのみに限定でき
るため，管理コストが減少する．すなわち，ファイルサー
バで暗号化攻撃を対策することにより，ソフトウェアの更
新や個別環境への対応を行う対象がサーバ 1 つに集約さ
れる．
そこで本研究では，拡張子を特有のものに変更する既知

の検体の振る舞いに限定して，ファイルサーバ上のファイ
ルに対する暗号化攻撃のファイル操作をユーザの操作を契
機に偽陽性なく短時間かつ自動で特定し，ロールバックす
る機構を提案する．管理コストの減少が目的であるため，
暗号化攻撃対策にはファイルサーバ上で得られる情報のみ
を使用する．ランサムウェアの中には，暗号化されている
ことを分かりやすくし被害者をより動揺させるため，暗号
化したファイルの拡張子を特有の拡張子に変更するものが
存在する [5, 6]．
ファイルサーバ上でランサムウェアに対抗するため，ファ

― 811 ―

「マルチメディア，分散，協調とモバイル
(DICOMO2023)シンポジウム」 令和5年7月

© 2023 Information Processing Society of Japan

イル拡張子を特有のものに変更する暗号化攻撃から自動で
ファイルを復元する．暗号化の際にファイル拡張子を特有
のものに変更する，ランサムウェアの典型的な挙動に則っ
て実装した疑似ランサムウェアを用いて，提案システムに
暗号化攻撃して自動で暗号化攻撃を受けたファイルを復元
する．本研究では，暗号化の際にファイル拡張子を特有の
ものに変更する疑似ランサムウェアを実装し，評価した．
本研究の貢献は以下の通りである：
• 管理コストを低減するため，ファイルサーバ上で
ユーザの操作を契機に暗号化攻撃を受けたファ
イルを自動的に復元する手法を提案し，プロト
タイプ実装を行った

• 暗号化攻撃とそれ以外のファイル操作が同時並
行する状況において，暗号化攻撃からの回復が
高速に行われることを示した

本論文の構成は以下の通りである．第 1節にて背景と目
的を示した．第 2節では，関連研究を示し，既存の暗号化
攻撃への対策手法に注目し，ファイルサーバ上での対策手
法に有用な情報を示す．第 3節では，拡張子変更に注目し
たファイルサーバにおける暗号化攻撃からの回復手法を述
べる．第 4節では，提案手法の復元速度について評価方法
を説明し，その結果について議論する．最後に，第 5節に
てまとめとする．

2. 関連研究
ファイルサーバ上でランサムウェアによる暗号化攻撃の

対策機構を実現するために，関連研究を確認することで，
本研究の立ち位置と目的の達成に向けて有効な情報を明ら
かにする．
ランサムウェアによる暗号化攻撃の対策機構を構築でき

るのは，「クライアント端末」，「クライアント端末がマウン
トしているファイルサーバ」，「ファイルサーバとクライア
ント端末が構成するネットワーク」の 3箇所である．この
3箇所のうち，「クライアント端末がマウントしているファ
イルサーバ」で対策を行う研究は著者らの知る限り報告さ
れていない．
本節では，クライアント端末上で暗号化攻撃の検知・停

止，および暗号化されたファイルの自動復元を行った研
究と，ファイルサーバとクライアント端末間の通信トラ
フィックを用いて暗号化攻撃を検知・停止する研究の 2種
類について述べ，ユーザの正当な操作をランサムウェアに
よる操作と誤検知する偽陽性を低くすることの重要性を述
べる．そのうえで，これまでランサムウェアを検知する手
掛かりとして用いられていた情報を述べ，ファイルサーバ
上での対策機構実現に有効な情報を明らかにする．

2.1 クライアント端末上での暗号化攻撃の検知・停止，お
よび自動復元手法

クライアント端末における既存手法では，機械学習など
の方法で暗号化攻撃や脅迫文の作成などの操作が示す特徴
を用いて高い精度で暗号化攻撃を検知・停止，および自動
復元ができることが明らかとなっている．
文献 [7]ではハイパーバイザを用いて，ストレージへの
アクセスパターンを収集することでランサムウェアの検知
を実現している．文献 [8]では，暗号化攻撃の振る舞いに
関する指標を使用して，暗号化攻撃を検知するカーネルド
ライバを作ることで，ユーザのデータが大量に失われる前
に低い偽陽性でランサムウェアを停止することを実現して
いる．しかしながら，ハイパーバイザやカーネルドライバ
は導入や維持更新に関わる管理コストが高いため，これら
の手法を組織へ導入することは難しい．例えば，組織でハ
イパーバイザなどの複雑な仕組みを管理するためには高度
な知識が必要となり，情報技術に習熟していない組織の構
成員が各自でこれらの検知機構を導入することは困難であ
る．つまり，既存の手法を導入するためには，他組織に端
末のセットアップや更新作業を依頼する必要があり，時間
と費用がかかる．さらに，これらの手法は自動でファイル
を復元できず，ファイル復元にかかる時間が別途必要であ
り，事業の復旧に時間がかかるため被害が拡大する可能性
があることが問題である．
文献 [4]では，Windowsネイティブファイルシステム向
けにランサムウェアの暗号化攻撃を検知し，データの自動
復元を行うアドオンドライバを開発した．IRPLogger (I/O

Request Packet Logger) という低レベル I/O ファイルシ
ステム要求を収集するためのモジュールを実装し，ユーザ
とランサムウェアのファイルアクセスを収集した．収集し
たデータを用いて教師あり学習を行い生成した分類モデル
で，良性プロセスとランサムウェアプロセスを 97.7%の精
度で分類できることを示した．この手法では，プロセスの
ファイル初回アクセス時にファイルのコピーをとり，プロ
セスがランサムウェアであると判断された場合はコピーを
用いてファイル復元を実現している．しかしながら，この
手法では検知に機械学習を使用しているため，後に再評価
を行った際には検知率が大きく低下している．文献 [9]で
作られたテストケースでは，分類精度が 65.7%まで低下し
たことが報告されている．
以上のように，クライアント端末向けの手法は「管理コ

ストが高い」，「ランサムウェアの停止のみ行い自動で復元
できていないものがある」，「機械学習で検知しているため
再学習をしなければ偽陽性が上がってしまう」という 3点
が問題である．

― 812 ―
© 2023 Information Processing Society of Japan

2.2 通信トラフィックを用いた暗号化攻撃の検知・停止
通信トラフィックを用いた暗号化攻撃の検知・停止を目

的に，文献 [10]ではパケットベースの通信を分析可能なメ
タデータ形式に変換するシステムでトラフィックデータを
集め，暗号化攻撃特有の動作を検知し，クライアント端末
との通信を遮断するシステムを開発した．この手法では，
ファイルサーバが暗号化攻撃された際でも攻撃を停止可
能であることが確認されている．しかしながら，通信トラ
フィックを用いた暗号化攻撃の検知・停止では，ファイル
の自動復元まで行うことができていない．

2.3 ファイルサーバ上で暗号化攻撃を受けたファイルを
自動復元する際の課題

ファイルサーバ上で暗号化攻撃を受けたファイルの復元
を試みる際，管理コストの問題は解決できるが，「短時間で
の復元」と「偽陽性」の 2つが大きな課題となる．
企業などの組織で実運用する際，暗号化攻撃を受けても

素早く事業を復旧できることが経済的な被害を抑えること
につながる．復旧期間の長期化による被害総額の増大を抑
止するために，暗号化攻撃の停止だけでなく自動で復元も
行うことで高速なファイル復元が必要である．
これまで見てきた既存の手法では，いずれも偽陽性が重

要な尺度となっている．暗号化攻撃の特定の際ユーザの正
当な操作をランサムウェアによる操作と誤検知することを
偽陽性と呼ぶ．暗号化攻撃の検知・停止，暗号化攻撃を受
けたファイルの自動復元は，偽陽性が起こってしまうと，
ユーザの正当な変更を停止したり，ロールバックしたりし
てしまう．

2.4 暗号化攻撃の特性
前節で述べた 2つの課題の解決に有効な情報として，ラ
ンサムウェアの拡張子変更が挙げられる．暗号化攻撃の際，
暗号化するファイルの拡張子を変更するランサムウェアが
複数報告されている [5, 6]．ファイルサーバ上でファイル
名の取得は可能であることから，ファイル拡張子はファイ
ルサーバ側のみで取得できる情報である．
文献 [8,11]において，以下 4つの典型的な暗号化攻撃の
挙動が述べられている．
(1) 暗号化対象となるファイルのデータを読み込み，暗号

化を行ったデータを同一のファイルに上書きする
(2) 暗号化対象となるファイルのデータを読み込み，暗号

化を行ったデータを別ファイルに保存した後，元の
ファイルを削除する

(3) 暗号化対象となるファイルのデータを読み込み，暗号
化を行ったデータを別ファイルに保存した後，元の
ファイルを別のデータで上書きし破壊する

(4) ユーザのドキュメントディレクトリから一時ディレク

トリなどにファイルを移動させた後ファイルを読み込
み，暗号化した内容を書き込んで元の位置に戻す．

ランサムウェアがファイル拡張子を特有の拡張子に変更
する場合，ファイル拡張子の変更操作から，ランサムウェ
アの暗号化攻撃によるファイル操作を特定できる可能性が
ある．ファイル操作のうち，操作対象ファイルのファイル
名に特有の拡張子を含んでいるものは暗号化攻撃に関連す
る操作だと分かる．例えば，このうち，2の挙動を示すも
のは暗号化データを保存するファイルを作成する際，拡張
子を変更したファイルを作成していると推測される．暗号
化攻撃に関する操作を特定できれば，暗号化攻撃による操
作を元に戻す操作を実行することで暗号化されたファイル
を復元できる．

3. 提案手法
本研究では，拡張子を特有のものに変更する既知の検体

の振る舞いに限定して，ファイルサーバ上のファイルに対
する暗号化攻撃のファイル操作を偽陽性なく短時間かつ自
動で特定し，ロールバックする手法を提案する．ファイル
サーバ上でランサムウェアの検知を行うために暗号化攻
撃に伴うファイル拡張子の変更操作を利用する．ファイル
サーバ上で書き込み処理が起きるたびに書き込み前のファ
イル内容をバックアップした上で，クライアント端末で実
行されたファイル操作を時系列順に並べた「ファイル操作
列」から暗号化される前のバックアップデータを特定する．
本研究では拡張子を判断基準として，ランサムウェアの操
作を確定できるため，偽陽性をなくせる利点がある．
ファイルを復元する際に機械学習などの処理時間のかか

る仕組みを使わず，高速に判別できる拡張子を用いる．ラ
ンサムウェアのファイル削除操作・ファイル作成操作を拡
張子を含むファイル名から特定し，短時間で暗号化攻撃に
よるファイル操作のロールバックを試みる．
自動ファイル復元機構では偽陽性があるとユーザの正当

な変更をロールバックしてしまうため，偽陽性を無くすこ
とは重要な指標となる．ランサムウェアが脅迫効果をより
高めるため暗号化したファイルの拡張子を特有のものに変
更するという特徴を用いて，その特有の拡張子を基準にし
た検知を行うことで偽陽性を減らすことが可能になる．

3.1 提案システムの概要
ランサムウェアによるファイル破壊から，提案システム

によるファイル復元までの流れを図 1に示す．
提案手法は，ファイル操作列を出力する「ファイル操作

列出力機能」，ファイル操作列から疑似ランサムウェアの暗
号化攻撃における特有の拡張子のファイル作成操作・ファ
イル削除操作を特定する「暗号化攻撃特定機能」，特定さ
れた暗号化攻撃のファイル作成操作・ファイル削除操作を

― 813 ―
© 2023 Information Processing Society of Japan

攻撃者

クライアント

クライアント
端末

暗号化攻撃
or

良性アクセス

ファイル
操作列

ランサムウェア

ファイルサーバ

暗号化攻撃を
ロールバック

暗号化攻撃
特定機能

ロールバック
機能

ファイル操作列
出力機能

ファイル操作，
ロールバック用の値

を記録

ランサムウェアの
ファイル操作列

ランサムウェアの
ファイル操作を特定

図 1 ファイル破壊から復元までの流れ

ロールバックする「ロールバック機能」の 3つの要素で構
成される．ファイル操作列出力機能が出力したファイル操
作列を暗号化攻撃特定機能に入力し，特定した暗号化攻撃
のファイル操作をロールバック機能に入力して自動ファイ
ル復元を実現する．

3.2 プロトタイプ実装に用いるファイルサーバ
本研究では，オープンソースのファイルサーバであ

る UNFS3 [12] を拡張する形で実装し，提案システムを
開発した．UNFS3は，Network File System ver3.0(NFS

ver3.0) [13]プロトコルを実現したファイルサーバ実装で
あり，ユーザスペースで動作する．提案システムは，NFS

ver3.0プロトコルで定義される手続きを実現したものを記
録，ロールバックする．提案システムを構築する際に使用
した UNFS3のリリースバージョンは 0.9.22である．

3.3 ファイル操作関数
提案システムを構成するにあたり，ファイルサーバ上の

ファイルを操作した際に実行される関数に注目する．本研
究では，この関数のことを「ファイル操作関数」と呼ぶ．
NFSファイルサーバをマウントしたクライアントでファイ
ル操作を行うと，ファイルサーバ上ではONC RPC [14,15]

によってファイル操作関数が実行される．ONC RPC と
は，サンマイクロシステムズ社が開発した，ネットワーク
を経由して関数を別の PCで実行する仕組みである．この
仕組みに基づき，クライアントプログラムが関数を呼んだ
とき，クライアント端末からファイルサーバにリクエスト
が送信される．ファイルサーバはリクエストを受け取り，
対応する処理を実行し，クライアント端末に処理結果を返
却する．このようにファイルサーバは，クライアント端末
がファイルを操作する度に，対応するファイル操作関数を
実行している．
実行されるファイル操作関数は，OSのシステムコール

表 1 NFS ver3.0 - Server Procedures

Server Procedures 動作
NULL 何もしない (レスポンステスト用操作)

GETATTR ファイル属性を取得する
SETATTR ファイル属性を指定する
LOOKUP ファイル名を検索する
ACCESS アクセス権限を確認する

READLINK シンボリックリンクを読みだす
READ ファイルを読みだす
WRITE ファイルへの書き込み
CREATE ファイルを作成する
MKDIR ディレクトリを作成する

SYMLINK シンボリックリンクを作成する
MKNOD 名前付きパイプ，デバイスファイルの作成
REMOVE ファイルを削除する
RMDIR ディレクトリを削除する

RENAME ファイル名を変更する
LINK ハードリンクを作成する

READDIR ディレクトリから読みだす
READDIRPLUS 拡張した情報をディレクトリから読みだす

FSSTAT 動的なファイルシステム情報を取得する
FSINFO 静的なファイルシステム情報を取得する

PATHCONF
ファイル名等の POSIX 基準適合状態を
取得する

COMMIT
サーバにキャッシュしたデータをスト
レージに反映する

とほぼ 1対 1で対応するものである．例えば，書き込みの
時は write，読み出しの時は readというように対応する関
数が呼ばれている．NFS ver3.0においては，文献 [13]の中
で述べられている Server Proceduresのうちの一部がファ
イル操作関数に当たる．NFS ver3.0の Server Procedures

を表 1に示す．
実行されたファイル操作関数は，クライアント端末に依

存することなく，ファイルサーバ側で記録することができ
る．そのため，ファイル操作関数はファイルサーバ側のみ
で自動ファイル復元を実現することを目指している提案シ
ステムに使用することができる．

3.4 ファイル操作列出力機能
ファイル操作列出力機能は，ファイル操作列を出力する

機能である．この機能はファイル操作関数が実行される
たびにファイル操作列の 1レコードを記録する．1レコー
ドに含まれるデータは，実行タイムスタンプ，実行された
ファイル操作関数，ファイル操作関数の引数，操作対象の
変更前のデータである．ファイル操作列出力機能による処
理の全体像を図 2に示す．
ファイル操作列出力機能の実装について実装主要部分を

図 3に示す．ここで，file_op_procはファイル操作関数，
tsはファイル操作の実行タイムスタンプ，op_targetは
file_op_proc(args)の呼び出しによって変更される対象

― 814 ―
© 2023 Information Processing Society of Japan

クライアント

クライアント端末

ファイルアクセス

ファイル操作を
ロギング

ファイルサーバ

ファイル操作ログ機能

ファイル操作列

変更前のテキスト
or バイナリ データ

ファイル操作列から
操作に対応するデータを参照

図 2 ファイル操作列出力機能

func file_op_proc (args){

time ts = getTS();

string name = get_proc_name();

Data op_target = get_target_data();

if (name == "WRITE"){

fp = fopen(backup_path);

write(fp, op_target);

fclose(fp);

printRecord(ts, name, args, backup_path);

}

// 本来の処理
}

図 3 ファイル操作列出力機能の実装主要部分

データの変更前の値，is_loggingはファイル操作列出力
機能を起動，停止するための真理値である．各ファイル操
作関数の初めに，このコード例で示した処理が行われて
いる．
ファイル操作列出力機能にかかわる処理の流れを，コー

ド例に沿って述べる．クライアント端末からファイル操作
が行われた際，対応するファイル操作関数が実行される．
ファイル操作関数が実行されると，実行タイムスタンプ，
ファイル操作関数名，ファイル操作関数の対象データの変
更前の値を取得する．ファイルへの書き込み処理の場合は，
更新前のファイル内容はファイル操作列に直接書き込むに
はデータサイズが大きく，のちにロールバック機能や暗号
化攻撃特定機能で扱いづらくなるためバックアップデータ
を保管用のファイルパスに書き込む．そして，最後にタイ
ムスタンプ，ファイル操作関数名，引数などを用いてファ
イル操作列の 1レコードを出力して，ファイル操作関数本
来の処理に戻るという流れになる．
この機能により，記録されたファイル操作列は図 4のよ

うになる．時系列順に，実行タイムスタンプ，実行時間，
実行されたファイル操作関数，ファイル操作関数の実行対
象となるファイルやディレクトリの絶対パス，ファイル操

Tue Jan 17 19:20:58 2023 NFSPROC3_GETATTR

/home/inamura/PublicUnfs3/dir3/c

Tue Jan 17 19:20:58 2023 NFSPROC3_ACCESS

Tue Jan 17 19:20:58 2023 NFSPROC3_WRITE

/home/inamura/PublicUnfs3/dir3/c

/home/nagano/unfs3_log/2023-01-17-19:20:58.287009

-before_write

Tue Jan 17 19:21:30 2023 NFSPROC3_LOOKUP

/home/inamura/PublicUnfs3/dir3/log_stop

図 4 実際のファイル操作列

表 2 ファイル操作関数の意味とロールバック手順
ファイル
操作関数

操作 ロールバック操作

WRITE ファイルへの書き込み
書き込みが行われる前の

バックアップを保存しておき
ファイル内容を復元する

SETATTR ファイル属性の指定 変更前のファイル属性を記録
しておき，変更する．

MKDIR ディレクトリの作成
作成したディレクトリの名前
を記録しておき，作成したデ
ィレクトリを削除する

SYMLINK
シンボリックリンク

の作成

作成したシンボリックリンク
の名前を記録しておき，作成
したシンボリックリンクを削

除する

MKNOD

特殊ファイル (名前
付きパイプ，デバイス
ファイル) の作成

作成した特殊ファイルの名前を
記録しておき，作成した特殊フ

ァイルを削除する

REMOVE ファイルの削除
削除したファイルのバックアッ
プを保存しておきバックアップ
をもとにファイルを再生成する

RMDIR ディレクトリの削除
削除されたディレクトリの名前
を記録しておき，ディレクトリ

を再生成する．

RENAME ファイル名の変更

変更される前のファイル名を保
存しておき，変更されたファイ
ル名を変更される前のファイル

名に再変更する

LINK ハードリンクの作成
生成したハードリンクの名前を
記録しておき，ハードリンクを

削除する

作関数の変更前情報を出力している．しかし，WRITEが
呼ばれた際は，この形に当てはまらず，ファイル操作列に
は変更前の情報を保存したファイルパスを記録している．

3.5 暗号化攻撃特定機能
暗号化攻撃特定機能は，ランサムウェア特有のファイル

拡張子を用いて，暗号化攻撃に伴うファイル削除操作と
ファイル作成操作を特定する機能である．この機能は，本
システムの管理者が任意のタイミングで実行する．ファイ
ル削除操作，ファイル作成操作を行う際には対応するファ
イル操作関数に操作対象ファイルのパス名が引数として
渡される．それらのパス名はファイル操作列に出力するこ
とができる．それらのパス名がランサムウェア特有の拡張
子を含んでいれば，そのファイル操作はランサムウェアの
ファイル操作列である．最終的に，ロールバック機能に入
力するために特定したファイル操作を出力する．

― 815 ―
© 2023 Information Processing Society of Japan

a.ransom
a.txt
a.ransom
a.ransom

⁝

NFSPROC3_READ
NFSPROC3_REMOVE
NFSPROC3_CREATE
NFSPROC3_WRITE

⁝

backuppath

data

①拡張⼦からランサムウェアの
ファイル作成操作を特定

※ .ransom… ランサムウェア特有の拡張⼦

②ベースネームが同じファイルの
削除操作を特定

③ロールバック対象の操作列を特定

ファイル操作列

ランサムウェアのファイル操作列(削除・作成のみ)

出⼒ NFSPROC3_REMOVE
NFSPROC3_CREATE

a.txt
a.ransom

backuppath

図 5 暗号化攻撃特定機能の操作

暗号化攻撃特定機能の操作を図 5に示した．まず，暗
号化攻撃の特定を行っている間に新たなファイル操作が実
行されないように，提案システムにおいてクライアントか
らの要求の受け付けを一時的に停止する．その後，ファイ
ル操作列を読み出し，リスト構造に格納する．そして，リ
ストの各要素ごとにファイル作成操作の作成対象のファ
イル名を探索し，ランサムウェア特有の拡張子を含んでい
た場合には，ランサムウェアの操作として特定する．その
後，特定したファイル作成操作により作成されたファイル
とベースネームが一致するファイルの削除操作をランサム
ウェアの操作として特定する．ここで，ベースネームとは
ファイル名のうち，拡張子以外の部分のことを示す．最後
に特定した操作列を出力する．このように特有の拡張子を
用いてファイル操作列から，ランサムウェアのファイル操
作列のみを抜き出す．

3.6 ロールバック機能
ロールバック機能は指定したファイル操作を元に戻すも

のである．前節の暗号化攻撃特定機能により得られた暗号
化攻撃のファイル操作列に含まれるファイル操作をロー
ルバックする．ファイル操作列出力機能により保存された
ファイル操作列を用いて，行われたファイル操作と相反す
る操作を行う．例えば，ファイル作成操作を元に戻したい
場合はファイル削除操作を行う．ファイルへの書き込み操
作を元に戻したい場合は，書き込みが起こる前の状態の
バックアップデータからファイルを復元する．実行された
操作とロールバック操作の対応を表 2に示す．
ロールバック機能の流れを述べる．まず，暗号化攻撃の

特定を行っている間に新たなファイル操作が実行されない
ように，提案システムにおいてクライアントからの要求の
受け付けを一時的に停止する．次に，ファイル操作列を読
み出し，リスト構造に格納する．そして，ファイル操作列
をタイムスタンプの逆順にソートする．最後にファイル操

作列のそれぞれのレコードに対し，実行されたファイル操
作関数と逆の操作を行う手続きを実行する．

4. 評価
第 3節で示した提案システム上のファイルに対して，独

自に実装した疑似ランサムウェアの暗号化攻撃から復元機
構を実行した後に自動で選択的にファイルを復元した実行
時間を計測した．この評価において，暗号化攻撃と並行し
て他のファイル操作が行われた場合でも暗号化攻撃のファ
イル操作のみを選択的にロールバックできることを示す．

4.1 疑似ランサムウェア
本研究では，評価の際に予想外の挙動を示さず評価実験

がやりやすいため，独自に実装した疑似ランサムウェアを
評価に用いている．疑似ランサムウェアは文献 [8,11]で述
べられている典型的なランサムウェアの挙動を参考に実装
されている．
実験で用いた疑似ランサムウェアは次に示すような流れ

で暗号化攻撃を行うものである．
(1) 暗号化対象ファイルの読み出し
(2) 暗号化データを書き込むファイル作成
(3) 暗号化データの書き込みと拡張子変更
(4) 暗号化対象ファイルの削除
Go言語で実装された疑似ランサムウェアのコードにお

ける主要部を図 6に示す．疑似ランサムウェアの流れを，
疑似コードに沿って述べる．まず，暗号化の鍵を作成する．
次に，暗号化対象のディレクトリを読み出し，ディレクト
リにあるそれぞれのファイルに対して暗号化処理を行う．
本来，暗号化対象のディレクトリは/Downloadsなどであ
る．その後読み出し元のファイルを削除し，CFBモードで
AES暗号化したテキストを作成する．最後に元ファイル
のファイル名において拡張子を特有のものに変更したファ
イルを作成する．作成したファイルに暗号化したデータを
書き込む．この処理をディレクトリ内のそれぞれのファイ
ルに対して繰り返す．

4.2 暗号化攻撃と並行して行われるファイル操作
提案システムを実際に使用する際には，暗号化攻撃と並

行して他にファイルが操作されることが予想される．実環
境では並行してユーザの作業が行われているはずである．
この際，並行して行われる操作は，複雑なものであれば

あるほどファイル操作の特定が難しくなる．実環境で行わ
れる操作はWord，Excel，その他のツールによる操作と思
われるが，これらのアプリケーションソフトウェアによる
ファイル操作は散発的でクライアント当り少量と考えられ
る．大量のファイル操作を行うものの例としてはプログラ
ムのビルドがあげられる．本実験では，疑似ランサムウェ

― 816 ―
© 2023 Information Processing Society of Japan

// Generate a key

key = make([]byte, 32)

rand.Read(key)

for folderPath = range foldersPath {

files = ReadDir(folderPath)

for _, file := range files {

filePath := filepath.Join(folderPath, file.Name())

if !HasSuffix(file.Name(), ".ransom") {

// Encrypt the file

plainText = ReadFile(filePath)

// Delete the original file

Remove(filePath)

// encrypt plain text

encrypt(key, plainText, cipherText, "CFB")

// Write the encrypted file

destinationPath := filepath.Join(folderPath,

changeExt(file.Name()+".ransom"))

err := WriteFile(destinationPath, cipherText)

}

}

}

図 6 疑似ランサムウェアの実装主要部分

アの暗号化攻撃と並行してファイルの読み出しや書き込み
が集中して行われるソフトウェアのソースコードからの
ビルドを行い，複数のファイル操作の中から暗号化攻撃を
受けたファイルのみを自動的に復元できることを評価す
る．対象のソフトウェアには，nginxのリリースバージョ
ン 1.23.3を用いた．

4.3 暗号化攻撃の選択的ロールバック評価
ユーザの操作を契機に，暗号化攻撃によるファイル操作

を暗号化攻撃特定機能を用いて特定し，選択的にロール
バックすることで暗号化攻撃を受けたファイルを復元し，
復元の実行時間を測定する．この処理の実行時間がファイ
ルの復元処理におけるダウンタイムである．攻撃無効化処
理の実行時間は攻撃対象ファイルの数やサイズで変化する
ことが想定されるため，ここでは攻撃対象ファイルの数を
変化させ実行時間の増分を評価する．今回は暗号化対象の
ファイル個数を 1～20個に変更し，設置した個数ごとに計
20回実験を行い，ファイル復元にかかる時間を計測した．
4.3.1 評価環境
実験環境を図 7に示した．サーバ上でファイルサーバ

を起動した上で，公開したディレクトリを自己マウント
し，マウントしたディレクトリ内部のディレクトリを暗号
化攻撃している．暗号化攻撃の際は，共有ディレクトリに
nginxのディレクトリと暗号化対象ディレクトリを置き，
nginxのビルドを実行している．
文献 [16]を参考に，暗号化対象となるファイルのファイ

ルサイズは，実環境でWindowsユーザが使用するファイ

ファイルサーバ

実験⽤PC

模擬ランサムウェア

マウント 暗号化攻撃

共有ディレクトリ

nginxソースコード 暗号化対象

共有

図 7 実験環境

製品名 Odyssey Blue J4105

CPU Intel®Celeron®J4105

メモリ 8GB

OS Debian 10 (buster)

表 3 実験に用いた小型 PC のスペック

図 8 復元時間とファイル数の関係

ルのファイルサイズの中央値である 80kBとした．この文
献では，2000年の上半期に一ヶ月間，犯罪研究所の取締
役とその上司，州の警察責任者，理系の大学院生などの多
様な人物が，多様な業務でファイルを使用した際のデータ
を収集している．この実験の中で，Windows NTユーザが
使用したファイルの中央値が 80KBほどであり，実際に使
用されたファイル全体でも約 20%が 80kB前後と示されて
いる．
実験で用いた機材は表 4.3.1に示した.

4.3.2 復元時間の評価結果
ファイル操作を並行して行いつつ，疑似ランサムウェア

による暗号化攻撃を実行し，疑似ランサムウェアによる
ファイル削除・作成操作を特定してファイルを復元した結
果を図 8に示す．この図は縦軸がファイルの復元にかかる
実行時間を，横軸が復元したファイル数を表している．こ
の際，並行して実行したファイル操作は 4.2で述べたよう
に nginxのビルドである．結果として，最もファイル数の
多い 20個のファイルに対して暗号化攻撃を行った場合で
も，86msで自動でファイルを復元できた．グラフがほぼ
一直線になっていることから復旧時間は失われたファイル

― 817 ―
© 2023 Information Processing Society of Japan

量に比例し，1ファイルあたり 3ms弱ほどで復元できてい
ることが分かる．
復元にかかる時間は比較的短く，事業の継続には影響が

少ないことが期待できる．本実験は企業などの組織がラン
サムウェアに侵入されファイルサーバに暗号化攻撃をうけ
た想定であり，事業の復旧の観点から復元にかかる時間が
重要となる．提案手法は暗号化攻撃の際，元ファイルを削
除して，拡張子を変更したファイル名のファイルを作成す
るランサムウェアから短時間のうちに自動でファイルを復
元できるということが分かった．

5. おわりに
本研究では，管理コストの減少を目的として，ファイル

サーバ上のファイルに対するファイル拡張子を特有のも
のに変更する暗号化攻撃のファイル操作を，ユーザの操作
を契機に偽陽性なく自動かつ短時間で特定し，ロールバッ
クする機構を提案した．提案システム上のファイルに対し
て，独自に実装した疑似ランサムウェアによる暗号化攻撃
から自動でファイルを復元した結果を評価した．この評価
において，暗号化攻撃と並行して他のファイル操作が起き
た場合でも提案手法は有効なことを示した．

参考文献
[1] 独立行政法人情報処理推進機構（IPA）：情報セキュリ

ティ白書 2022，独立行政法人情報処理推進機構（IPA）
(2022).

[2] 警察庁：令和３年におけるサイバー空間をめぐる脅威の
情勢等について，警察庁 (2022).

[3] 地方独立行政法人大阪府立病院機構大阪急性期・総合医療
センター情報セキュリティインシデント調査委員会：調査
報告書，https://www.gh.opho.jp/pdf/report v01.pdf (参
照 2023-5-23).

[4] Continella, A., Guagnelli, A., Zingaro, G., De Pasquale,
G., Barenghi, A., Zanero, S. and Maggi, F.: ShieldFS:
A Self-healing, Ransomware-aware Filesystem, Proceed-
ings of the 32nd Annual Computer Security Applica-
tions Conference, ACM.

[5] McAfee: 脅威増大中のBabukランサムウェアを分析（技術
レポート），https://ascii.jp/elem/000/004/064/4064324/
(参照 2023-5-22).

[6] GROUP, Y. T.: Conti Ransomware source
code: a well-designed COTS ransomware,
https://yoroi.company/research/conti-ransomware-
source-code-a-well-designed-cots-ransomware/ (参 照
2023-5-22).

[7] 程田凌羽，今泉大慈郎，平野学，小林良太郎ほか：スト
レージアクセスパターンに着目した機械学習及び深層学
習によるランサムウェアの検知手法の検討，研究報告マ
ルチメディア通信と分散処理 (DPS)， Vol. 2020, No. 19,
pp. 1–8 (2020).

[8] Scaife, N., Carter, H., Traynor, P. and Butler, K. R. B.:
CryptoLock (and Drop It): Stopping Ransomware At-
tacks on User Data, 2016 IEEE 36th International Con-
ference on Distributed Computing Systems (ICDCS),
pp. 303–312 (2016).

[9] Gupta, A., Prakash, A. and Scaife, N.: Prognosis Nega-

tive: Evaluating Real-Time Behavioral Ransomware De-
tectors, 2021 IEEE European Symposium on Security
and Privacy (EuroS&P), pp. 353–368 (online), DOI:
10.1109/EuroSP51992.2021.00032 (2021).

[10] Morato, D., Berrueta, E., Magaña, E. and Izal,
M.: Ransomware early detection by the analysis of
file sharing traffic, Journal of Network and Com-
puter Applications, Vol. 124, pp. 14–32 (online), DOI:
https://doi.org/10.1016/j.jnca.2018.09.013 (2018).

[11] 荻原拓海，小林良太郎，加藤雅彦ほか：デコイファイル
を用いた暗号化型ランサムウェアの検知とプロセス特定
に関する検討，研究報告マルチメディア通信と分散処理
(DPS)， Vol. 2021, No. 50, pp. 1–8 (2021).

[12] Schmidt, P.: UNFS3 Homepage,
https://unfs3.sourceforge.net/ (参照 2022-12-22).

[13] Staubach, P., Pawlowski, B. and Callaghan, B.: NFS
Version 3 Protocol Specification, RFC 1813 (1995).

[14] Sun Microsystems, I.: RPC: Remote Procedure Call Pro-
tocol specification: Version 2, RFC 1057 (1988).

[15] Srinivasan, R.: XDR: External Data Representation
Standard, RFC 1832 (1995).

[16] Roselli, D. S., Lorch, J. R., Anderson, T. E. et al.: A
Comparison of File SystemWorkloads., USENIX annual
technical conference, general track, pp. 41–54 (2000).

― 818 ―
© 2023 Information Processing Society of Japan

