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概要：ヒアラブルデバイスは多様な機能を搭載できるデバイスとして注目されている．機能の中には，電
子決済機能やユーザのバイタル情報の測定など，ユーザのプライバシーに関わる情報を扱う機能も考えら
れる．そのため，ヒアラブルデバイス単体による個人認証システムが必要である．本研究では，Wi-Fi信
号の伝搬路情報である CSI (Channel State Information) を利用し，頭部伝搬特性の個人差から認証を行
うシステムの実現性を示す．ユーザは，Wi-Fi送受信機を搭載したヒアラブルデバイスを装着する．デバ
イスの左右間で通信を行った際の伝搬路は頭部形状の情報を有していると考えられる．この伝搬路情報を
利用して個人認証を実現する．本稿では，Wi-Fi送受信機を搭載したヒアラブルデバイスを作成し，ユー
ザが静止している状態での，実際のユースケースを想定した 3つの環境において実験を行った．被験者 7

名に対し，CSIの振幅情報を特徴量とすることで，AUCスコア 0.842となり，本システムによる個人認証
の実現可能性が示された．

1. はじめに
近年，ワイヤレスイヤホンなどのヒアラブルデバイスは，

音声を聞く本来の機能に加えて多様な機能を搭載できるデ
バイスとして注目されている [1]．例えば，心電図，弾道心
電図，光電容積脈波に加え，現在広く普及している腕時計
型ウェアラブルデバイスでは測定が難しい脳波などのバイ
タル情報を測定する研究が報告されている [2, 3]．バイタ
ルセンシング以外にも，電子決済機能などの導入も期待さ
れており，実際にヒアラブルデバイスを用いた実証実験も
行われている [4]．
ヒアラブルデバイスにユーザのプライバシーに関わる情

報を扱う機能が搭載された場合，様々なセキュリティリス
クが発生する．例えば，デバイスの正規ユーザではない第
3者がそのヒアラブルデバイスを無断で使用し，なりすま
しや不正な決済が行われたり，ヒアラブルデバイスと接続
されたデバイスにアクセスし，プライバシーに関わる情報
を盗まれる可能性もある．
従来の認証手法である PINコードや指紋認証は，認証を
行う行動をデバイスを装着するたびに要求しなければなら
ず，ユーザにとってストレスとなる．頻繁に着脱を行うヒ
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アラブルデバイスにおいて，認証はユーザの負担にならな
い認証方式の実現が課題となっており，ユーザの生体情報
等を用いた認証システムが必要である．
本研究の目的は，認証のための行動を必要としないヒ

アラブルデバイス向けの個人認証システムを構築するこ
とである．本研究では，ユーザの生体情報である頭部形
状と脳内部の個人差による認証システムを提案する．頭
部形状と脳内部の生体情報を捉えるため，Wi-Fi信号の伝
搬路情報である CSI（Channel State Information）を利用
する．CSI とは，OFDM（orthogonal frequency-division

multiplexing）の各サブキャリアの位相，振幅がどのよう
に変動したかを表している．頭部の左右にWi-Fi送受信機
を設置して通信した際に取得できる信号の位相，振幅情報
は，頭部形状の個人差を表していると考えられる．この位
相，振幅情報を特徴量として機械学習によって認証する．
ヒアラブルデバイスは家庭内においてユーザがほぼ静止

している状態で使用されることが多いことから，提案シス
テムの構築に向けた第 1歩として，本稿ではユーザが静止
している状態での個人認証システムの実現性を検証する．
ヒアラブルデバイスの家庭内での使用を考えると，音楽を
聴いたり，動画を見たりなど，リラックスした状態での使
用が想定される．イヤホン・ヘッドホンの使用シーンの調
査では，「音楽を聴く」が 71%と最も多く，その次に「動画
配信・共有サービスを視聴する」が 50%であった [5]．そ
のため，家庭内においてはユーザが静止している状態でヒ
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アラブルデバイスが使用されることが多いと考えた．
Wi-Fi送受信機を搭載したヒアラブルデバイスを作成し，

ユーザが静止している状態で，複数被験者での認証精度，
装着位置のずれによる精度への影響，マルチパスによる精
度への影響をそれぞれ実験的に評価した．その結果，それ
ぞれ AUCスコア 0.842，0.784，0.597で認証できることを
確認した．
本稿の構成は以下の通りである．2節では本研究の関連

研究として，音漏れを使用した個人認証などのヒアラブル
デバイスを使用した個人認証や，Wi-Fiセンシングに関す
る研究について述べ，3節では本研究の提案システムとし
て CSIを利用したヒアラブルデバイスによる個人認証シス
テムについて述べる．4節ではデータ収集実験と評価につ
いて述べ，最後に 5節でまとめとする．

2. 関連研究
これまでにもヒアラブルデバイスにおける個人認証手法

は報告されている．しかし，著者らが調べた範囲では，ヒ
アラブルデバイス上でWi-Fi信号を用いた個人認証手法は
報告されていない．本節では，関連研究として，ヒアラブ
ルデバイスにおける個人認証に関する研究，頭部形状を利
用した個人認証に関する研究，Wi-Fiセンシングに関する
研究について述べる．

2.1 ヒアラブルデバイスにおける個人認証に関する研究
雨坂ら [6]は，ヒアラブルデバイスからの音漏れを利用

した個人認証手法を提案している．ユーザはイヤホン型の
ヒアラブルデバイスを装着し，耳介を含めてヒアラブルデ
バイスを手で覆う．ヒアラブルデバイスからは測定信号と
してチャープ音を再生する．このとき，再生されたチャー
プ音の外耳道における反響と，耳介へ漏れた音が手で覆っ
たときに発生する反響音から個人を認証する．しかし，こ
の手法には，音漏れが小さいためにカナル型のイヤホンが
対象外，手で耳介を覆うためにヘッドホン型のヒアラブル
デバイスが対象外など，デバイス面での制約がある．
Mizuhoら [7]は，ヒアラブルデバイスにカメラを搭載

し，耳の形状画像から個人認証を行う手法を提案している．
ユーザは小型カメラを搭載したヒアラブルデバイスを装着
する．カメラの位置は，耳形状の中で個人差が大きい耳の
上部を写すように調整されている．カメラによって撮影さ
れた耳形状の画像から機械学習によって個人を認証する．
しかし，この手法では，カメラを使用しているため，プラ
イバシーの問題やバッテリーの消費が大きくなるなどの問
題がある．耳形状の画像を特徴量としているため，ヘッド
ホン型のデバイスに対応できないなど，デバイス面での制
約がある．
Wangら [8]は，歯のジェスチャーを行う際に発生する音

波効果を利用した個人認証手法を提案している．この手法

では，イヤホン型デバイスに内向きマイクを搭載したデバ
イスを装着する．ユーザの歯のジェスチャーによって発生
する音波を特徴量とし，ディープラーニングによって 95%

の精度で個人認証が可能であることが示されている．
Wangら [9]は，ユーザが顔を指でなぞる際に生じる音
波効果を利用した個人認証手法を提案している．この研究
では，イヤホン型デバイスに内向きマイクを搭載したデバ
イスを使用している．実験では，1年間にわたり室内，屋
外などの複数の環境で評価を行っており，98.37%の精度で
認証が可能であることが示されている．
これに対し，本研究ではWi-Fi信号を利用した，個人認

証手法を実現する．イヤホン型，ヘッドホン型などのデバ
イスの種類による制約のない継続的な認証手法を目指す．

2.2 頭部形状を利用した個人認証に関する研究
Fujiiら [10]は，圧力センサを搭載したヘルメットを用

いて，個人認証する手法を提案している．市販のヘルメッ
トの内部に 32個の圧力センサを取り付けたデバイスを装
着し，機械学習によって個人認証を行っている．9名の被
験者からデータを取得し，個人識別率は 100%であり，平
均等価エラー率（EER）は 0.076であった．
Holzら [11]は，スマートフォンのタッチスクリーンに体

の部位を押し当てることで個人識別する手法を提案してい
る．この研究では，タッチスクリーンの静電容量式センサ
から画像を作り出し，画像特徴を抽出して機械学習によっ
てユーザを識別している．身体部分として，耳，拳，指骨，
指，手を特徴量としており，耳に限定すると 99.52%で認
証可能であり，最も高い精度であった．これらの関連研究
から，頭部形状には個人差があり，個人認証の特徴量とし
て適していると考えられる．

2.3 Wi-Fiセンシングに関する研究
本稿で提案する手法のように，CSIを用いたWi-Fiセン
シングによって，送受信機間にある人物や物体を識別する
研究が報告されている．
松田ら [12]は，Wi-Fiの CSIを用いた静的物体識別手法
を提案している．この研究では，Wi-Fiの送受信アンテナ
の真ん中に設置された物体を識別する．アンテナ間に，何
も設置しない，水入りペットボトル，スプレー缶，木彫り，
ぬいぐるみの 5 種類の環境で実験を行っている．評価で
は，CSIから位相，振幅，位相＋振幅情報の 3種類の特徴
量から評価結果をそれぞれ比較しており，振幅を特徴量と
することで 98.33%以上の精度で物体を識別している．本
研究ではこの評価手法を応用し，位相，振幅，位相＋振幅
情報の 3種類の特徴量を用いて評価し，精度を比較する．
折原ら [13]は，Wi-Fiの CSIを用いた自動車・自転車の
検出手法を提案している．この研究では，Wi-Fiの送受信
アンテナ間を通過した，自動車，バイク，自転車，バス，そ
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個人認証ブロック 認証

図 1 CSI を用いた頭部による個人認証システムの概要

して何も通過していない場合の 5つの場合について識別を
行っている．車両検出のため，CSIの位相と振幅から車両
通過時間区間ごとに平均や，中央値などの 13種類の特徴
量を抽出し，機械学習によって車両の識別を行っている．
本研究では，この特徴量を参考にし，CSIの位相と振幅か
ら 13種類の特徴量を用いて評価する．
Wangら [14]は，CSIを用いた人体センシングのための
深層学習フレームワーク CSI-Net を提案している．この
研究では，生体情報として，体脂肪率と筋肉率の推定，個
人識別，手のジェスチャー認識，転倒検出のタスクによっ
て評価している．それぞれ精度は，体脂肪率の平均誤差
（mAE）が 1.11%，筋肉率は 1.00%，個人識別率は 93%，
ジェスチャー認識率は 100%，転倒検出は 96.67%であった．
これらの関連研究から，Wi-Fi送受信機間の物体を CSI

の位相情報と振幅情報を元に識別することが可能であるこ
とが示されている．本研究では，認証を行うための特徴量
として，位相，振幅，位相＋振幅情報の 3種類で評価を行
い，精度を比較することで認証に適した特徴量を特定する．

3. ヒアラブルデバイス向け個人認証システム
3.1 アプローチ
ヒアラブルデバイス向け個人認証のアプローチは，頭部

形状の個人差から生まれる電波の伝搬路情報の違いを用
いて個人認証することである．まず，Wi-Fi送受信機をヒ
アラブルデバイスの左右にそれぞれ配置する．デバイスを
ユーザが装着した状態で，左右間で継続的に通信を行う．
通信を行った際の電波の伝搬路情報を CSI情報として取
得する．この伝搬路情報には，頭部の形状に沿って回折し
た位相情報と，脳内部を透過した電波が，脳内の水分量に
よって減衰した振幅情報が含まれている．これらの情報は
個人によって差が生じると考えられるため，これを認証の
ための特徴量として利用する．得られた CSIの各サブキャ
リアから，特徴量を抽出して個人認証モデルを作成する．

3.2 システム概要
図 1に，本システムの概要を示す．本システムは，ヒア

ラブルデバイスの左右にそれぞれ，Wi-Fiの送信機，受信
機が搭載されているデバイスを想定している．デバイスに
ユーザを登録する場合，ユーザがデバイスを装着するとヒ
アラブルデバイスの左右間で通信を行い，CSIデータを取
得して認証モデルを作成する．ユーザ登録後，デバイスが
装着されている間はデバイスの左右間で定期的に通信が行
われ，使用しているユーザの CSIデータを取得し，認証モ
デルによって継続的に認証する．CSIを用いた頭部による
個人認証システムは，図 1に示すようにデータ分割ブロッ
ク，特徴量抽出ブロック，個人認証ブロックの 3 つのブ
ロックで構成されている．データ分割ブロックでは，取得
した CSIデータから振幅情報と位相情報を復元し，一定時
間ごとの windowに分割する．特徴量抽出ブロックでは，
windowごとにそれぞれ平均，中央値など 13種類の特徴量
を計算し，抽出する．最後に，個人認証ブロックでは特徴
量抽出ブロックで抽出した特徴量から機械学習により，個
人を認証する．
以降では各ブロックについて詳述する.

3.3 データ分割ブロック
データ分割ブロックは，CSIから特徴量となる位相，振幅

情報を復元するための復元ステップと window分割ステッ
プに分けられる．
復元ステップでは，継続的に取得した時系列の圧縮 CSI

データから機械学習の特徴量として位相，振幅情報を復元
する．圧縮 CSIデータは，送信アンテナ数 ×受信アンテ
ナ数 ×サブキャリア数の次元を持つ CSI角度情報のテン
ソルであり，そこから圧縮前の CSIを復元できる．Wi-Fi

通信時，1つのパケットから得られる CSIのテンソルの各
要素は以下の通りである．

CSIp,q,r = Ap,q,re
jϕp,q,r (1)

ここで，pは送信アンテナ番号，qは受信アンテナ番号，r

はサブキャリア番号，ϕは位相，Aは振幅である．全ての
サブキャリア，送信アンテナと受信アンテナの組み合わせ，
全ての取得したパケットに対し，式 (1)を用いて位相，振
幅情報を復元する．
window分割ステップでは，算出された位相，振幅情報
を時系列方向に固定時間幅 windowで分割する．window

はオーバーラップさせずに分割する．

3.4 特徴量抽出ブロック
特徴量抽出ブロックでは，データ分割ブロックで分割

された window の各サブキャリアごとに特徴量を抽出す
る．各 windowには，window内パケット数を N，送信ア
ンテナ数を Tx，受信アンテナ数を Rx，サブキャリア数を
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表 1 特徴量
特徴量
平均
中央値
標準偏差
最大値
最小値
上四分位値
下四分位値
四分位範囲
平均絶対偏差
尖度
歪度
自己相関
二乗平均平方根

ℓ とすると，位相，振幅合わせて，2 × Tx × Rx × ℓ × N

個存在している．各 windowのパケット群に対し，各サブ
キャリアごとに平均や，中央値など，表 1に示す合計 13

個の特徴量を抽出する．各 windowで位相，振幅合わせて
2× Tx ×Rx × ℓ× 13個の特徴量を取得する．

3.5 個人認証ブロック
個人認証ブロックでは，特徴量抽出ブロックで抽出した

特徴量を用いて機械学習により認証モデルを構築する．学
習データの収集，すなわちユーザの登録はあらかじめ行わ
れていることを前提とする．ユーザがデバイスを装着して
いる間，常に CSIデータを取得し，ユーザのラベルを付
与する．取得したデータから教師あり学習により認証モデ
ルを作成する．認証時は，登録されているユーザの認証モ
デルを使用し，ユーザを一定時間ごとに認証する．認証モ
デルの構築には，教師あり学習アルゴリズムと教師なし
学習アルゴリズムを使用する．本稿では認証を行うため，
One Class SVM，Isolation Forest，GMM，k-NN，LOFを
用いた．

4. 評価
提案システムの有効性を検証するため，デバイスを作成

しデータを収集した．CSI の特性から Wi-Fi 送受信機の
周りの環境によって CSI情報に大きな影響があるため，複
数被験者での認証精度，装着位置のずれによる影響，マル
チパスによる影響という 3つの評価項目を設定し，評価を
行った．

4.1 実装
図 2に作成したデバイスを示す．本稿で提案したシス

テムの実現有効性を検証するため，ヘッドホンにWi-Fiの
送受信機を取り付けたデバイスを作成した．ヘッドホンは
Audio-TechnicaのAHT-SR30BTを使用し，Wi-Fiの送受
信機は，Seeed Studio XIAO ESP32S3を使用した．送信

図 2 作成したデバイス

Door

Shelf

Shelf

Shelf

Shelf

Shelf

Desk

Desk

Shelf

Shelf

Door

Position 1
Position 2

図 3 実験環境の間取り図

図 4 実験の様子

アンテナ，受信アンテナはともに 1本であり，サブキャリ
ア数は 192本であった．サンプリングレートは，約 75Hz

であった．データの取得には，ESP-CSIを使用した．装着
時の送受信機アンテナ間の距離は約 25cmであった．

4.2 評価方法
図 3に実験場所の間取り図を示す．図 3の Position 1，

Position 2は実験時の被験者の位置であり，矢印の向きは
被験者が向いている方向である．実験場所は，公立はこだ
て未来大学実験室，被験者は 7名である．
図 4に実験の様子を示す．データ収集の流れは以下のと
おりである．
( 1 ) 被験者を椅子に座らせる
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(a) 位相情報
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(b) 振幅情報
図 5 位相・振幅情報のヒートマップ

表 2 複数被験者による認証精度
位相 振幅 位相 + 振幅

One Class SVM 0.693 0.817 0.792

Isolation Forest 0.634 0.632 0.742

GMM 0.800 0.842 0.828

k-NN 0.796 0.819 0.804

LOF 0.791 0.822 0.764

( 2 ) ヘッドホン型デバイスを装着
( 3 ) 3分間送受信機間で通信を行いデータを取得
( 4 ) データ取得終了
この手順を 1Sessionとする．この時，データの取得開始か
ら 10秒間と，取得終了の 10秒前は機材を止める人の動き
があるため，データセットから除外している．window幅
は，1秒のため，window数は 160個となる．
収集したデータのうち，nullとなったデータは破棄する．
図 5に，取得した位相情報と，振幅情報のヒートマップを
示す．ヒートマップから，位相情報，振幅情報ともに，値
が 0となっているサブキャリアが存在し，サブキャリアの
前方部分，中央部分，後方部分で値が大きく異なっている
ことがわかる．そのため本稿では，サブキャリアの前方部
分，中央部分，後方部分からそれぞれサブキャリアを 50本
ずつ抽出し，位相，振幅それぞれ 150本のサブキャリアを
特徴量としている．

4.3 複数被験者での認証精度
頭部形状の個人差から複数ユーザを認証できることを検証

するため，実験を行い評価した．データは図 3のPosition 1

で，各被験者 1 Session取得した．
収集したデータセットを用いて教師あり学習アルゴリズ

ムによる認証精度を評価した．評価方法は，10分割 Leave-

One-Out交差検証によって，AUCスコアを算出した．
表 2に個人認証の評価結果を示す．各教師あり学習アル

表 3 1 Session を学習データとしたときの評価結果
学習アルゴリズム 振幅
One Class SVM 0.690

Isolation Forest 0.618

GMM 0.723

k-NN 0.697

LOF 0.701

ゴリズムで最も AUCスコアが高かったのは GMMによる
振幅のみの場合で，0.842と高い精度結果となり，本シス
テムにおける実現可能性が示された．使用したデータのう
ち，振幅のみを用いた場合が最も高い精度であったため，
以降の評価では振幅のみを用いて評価を行う．

4.4 装着位置のずれによる影響
デバイスの装着位置のずれによる認証精度への影響を調

べるため，実験を行い評価した．データは，図 3の Posi-

tion 1で 1 Sessionごとにウェアラブルデバイスの着脱を
行い，各被験者 5 Session取得した．
まず，教師あり学習アルゴリズムごとの認証精度を，5

分割 Leave-Four-Session-Out交差検証によって AUCスコ
アを算出して評価した．
表 3に個人認証の評価結果を示す．各教師あり学習アル
ゴリズムごとの AUCスコアで最も高かったのは GMMに
よる振幅のみの場合で 0.723であった．
次に，装着位置のずれの影響を抑えるため，4 Sessionを
学習データ，他の 1 Sessionをテストデータとする 5分割
Leave-One-Session-Out交差検証を行い評価した．
表 4に，個人認証の評価結果を示す．各教師あり学習

アルゴリズムによる AUCスコアで最も高かったのは LOF

の 0.784であった．
これらの評価結果より，装着位置のずれによる影響が精

度を低下させることが示された．しかし．着脱を複数回
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表 4 4 Session を学習データとしたときの評価結果
学習アルゴリズム AUC

One Class SVM 0.762

Isolation Forest 0.661

GMM 0.754

k-NN 0.742

LOF 0.784

表 5 別環境で取得したデータを学習データとしたときの評価結果
学習アルゴリズム AUC

One Class SVM 0.502

Isolation Forest 0.584

GMM 0.597

k-NN 0.585

LOF 0.551

行ったデータを学習データとすることで，装着位置のずれ
による影響を軽減できることが示された．

4.5 マルチパスによる影響
環境の変化による認証精度への影響を調査するため，実験

を行い評価した．データは図 3の Position 1と Position 2

で，1 Sessionずつ取得した．
収集したデータセットを用いて教師あり学習アルゴリズ

ムによる認証精度を評価した．2 Sessionのデータセットか
ら，1 Sessionを学習データ，もう 1 Sessionをテストデー
タとする 2分割 Leave-One-Session-Out交差検証を行い評
価した．
表 5に個人認証の評価結果を示す．各教師あり学習アル

ゴリズムによる AUCスコアで最も高かったのは GMMに
の 0.597であった．
精度評価の結果から，学習データとテストデータの収集

場所が異なる場合，精度が著しく下がることが示された．
これは環境からのマルチパスがデータセットに大きな影響
を及ぼしているため，頭部形状の情報を抽出できていない
ことが考えられる．

5. おわりに
本稿では，Wi-Fi送受信機を左右に搭載したヒアラブル

デバイスを使用しているユーザをWi-Fi CSIを用いて認証
するシステムを提案した．提案システムでは，ヒアラブル
デバイスの左右間でWi-Fi通信をした際の CSIデータを
取得し，教師あり学習によりユーザを認証する．その実現
可能性を示すため，Wi-Fi送受信機を搭載したヘッドホン
型デバイスを作成し，CSIデータを取得して実験的評価を
行った．評価では，複数被験者での認証精度，デバイス装
着時のずれの影響，マルチパスの影響の 3つの評価項目を
設定した．複数被験者による認証の AUCスコアは 0.842

であった．装着時のずれによる影響として，4 Sessionを学
習データ，その他 1 Sessionをテストデータとし，評価し

た結果，AUCスコアは 0.784であった．マルチパスの影
響として，学習データとテストデータを異なる環境で取得
し，評価をした結果，AUCスコアは 0.597であった．以上
の結果から，学習データとテストデータが同一環境で取得
されたデータであれば，本システムを実現できる可能性を
有することを示した．
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