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Abstract: Inertial measurement unit (IMU) data have been utilized in human activity recognition (HAR).
In recent studies, deep learning recognition for IMU data has caught researchers’ attention for the capability
of automatic feature extraction and accurate prediction. On the other hand, the challenge of data collection
and labeling discourages researchers to step into it. IMUTube provides a solution by building up a pipeline
to estimate virtual IMU data from YouTube videos for body motion. For head motion data, several methods,
such as OpenFace 2.0 provide the function of predicting facial landmarks and calculating head facing angle
from video. However, to our knowledge, there is no study focusing on estimating IMU data from human
head motion. In our previous work DisCaaS, we created the M3B dataset which contains IMU and 360-
degree video data from the meeting. We exploit head motion data extraction models to predict participants’
nodding and speaking gestures. In order to further improve the performance of nodding recognition, in this
paper, we are interested in understanding the quality of estimated gyro data calculated from these existing
head motion models. We investigate the difference between the motion data estimated from video and those
measured by a 9-axis sensor not only in the time domain but also in the frequency domain. Finally, we
discuss the future direction of the result.

1. Introduction

Recent years, under influence of COVID-19, the number of

online meetings has increased noticeably. According to the

meetings statistics provided by Zippa [1], there are around

55 million meetings held each week in the United States.

That means over a billion of meetings are held per year.

However, although employees spent such amount of times

and energy on meetings, if the meeting turns out to be un-

productive, it becomes a huge waste of companies’ resources.

As their research shows, 24 billion is a considerable amount

of productive work hours being lost. Without a doubt, the

requirement to improve the productivity and efficiency of

meetings is crucial.

After the publication survey, several characteristics have

been found to be determinative of the behavior of partici-

pants during the meeting. These can be concluded to three

categories: appearances [2], verbal information [3], and non-

verbal information [4]. Our previous work DisCaaS [5] aimed

to use not content-sensitive information to protect users’ pri-

vacy, in other words, we applied a sensor device that does

not collect the text or content of a meeting. Meanwhile, we

also want to ensure the system’s reproductivity, so a con-

tactless device is selected.

In human activity recognition (HAR), researchers are at-

tracted by the magnificent performance of deep learning so-

lutions on sensor-based tasks. However, the challenge of
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data collection and labeling discourages researchers from

exploring sensor-based applications based on Deep Learn-

ing methods. In order to solve the data sparsity problem

in this field, several researchers start to propose solutions

that simulate IMU data from video. OpenFace [6] estimates

the facial and eye landmarks’ location of the person in the

video. Based on landmark information, they provide func-

tions including head pose estimation, gaze estimation, and

facial expression prediction. IMUtube [7] transforms the full

body of each person in a video into a skeleton body in 3-

dimensional space. With the full 3D motion information,

they tracked the acceleration and orientation changes in the

body’s joints, and extract the virtual IMU information from

the video. Compared to IMUtube, recent research, CRO-

MOSim [8], emphasizes that instead of simulation based on

skeleton structure, they simulated virtual IMU data based

on 3D body extracted from 3D-skinned models. The sensor

position can be located closer to reality, which enables the

system to simulate virtual sensor data with higher fidelity.

Inspired by these virtual IMU extraction approaches, Dis-

CaaS extracts facial landmark position data and head mo-

tion data from video with OpenFace tool kits. We used ma-

chine learning models to conduct prediction of participants’

gestures on estimated data. However, since the method of

recognizing the nodding gesture based on estimated head

motion data did not reach the expected performance, we

want to understand the fidelity of gyro data estimated from

OpenFace.
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2. Related Work

2.1 Meeting Analysis

Meeting analysis can be based on three aforementioned

features: Participant Appearance, Verbal Communication,

and Nonverbal Communication.

2.1.1 Participant Appearance

[2, 9, 10] shows the importance of appearance such as

age possesses a strong relationship with forgiveness and the

number of counteractive behaviors. They also show how for-

giveness and counteractive behaviors influence the team’s

harmony and productivity. Gent et al. [11] proposed a

method for estimating the age-based facial aging patterns

on FG-Net Aging [12] and the MORPH [13] Database. They

extracted facial features with the appearance model [14], af-

ter which these features were processed by SVM to obtain

the estimated age [15].

2.1.2 Verbal Communication

In verbal communication, context, pronunciation, vocal

expression, and Speaking Duration are some import features

that impact the quality of a meeting [3, 16, 17]. Therefore,

there are some works focusing on detection of these fea-

tures. For context, Yu and Dang [18] have proposed auto-

matic speech recognition (ASR) to convert speech to text.

For pronunciation, Zhang et al. [19] proposed a new end-

to-end ASR system based on the hybrid connectionist tem-

poral classification and attention (CTC/attention) architec-

ture to improve advanced automatic pronunciation error de-

tection (APED) algorithms. The new system was a suitable

general solution for L1-independent computer-assisted pro-

nunciation training (CAPT). For vocal expression, Zhao

et al [20] proposed ROC, which is an online platform sys-

tem allows ubiquitous access to rate people’s communication

skills. The rating system served as a feedback system that

gradually improved the communication skills of the partic-

ipants. Regarding the duration of the speech, our previous

work DisCaaS applied OpenFace to achieve the detection of

the duration of the speech of the participants.

2.1.3 Nonverbal Communication

For nonverbal communication, Pham et al. [21] proposed

the estimation of 3D poses from a single RGB camera, which

estimates body posture and activities using a camera. Zhao

et al.’s ROC speak system include smile detection in their

automated feedback process to analyze the smile intensity

of the attendants. Zhang et al. proposed eye contact detec-

tion using a camera. DisCaaS [22] provide the function of

nodding detection by a camera.

2.2 IMU Data Simulation

With the intention of solving the problem of data scarcity

in the HAR field, recently researchers proposed methods

that extract IMU data from video data. The most rep-

resentative work is IMUTube [7], which combines multiple

methods into a complete pipeline to extract IMU data from

the readily available YouTube resource. Inspired by IMU-

Tube, other researchers proposed some modifications based

on their method to improve the accuracy of virtual IMU

data. For head motion data, these methods provide head

pose estimation.

2.2.1 IMUtube

IMUTube aims at converting video data collected from

social media platforms into usable virtual sensor (IMU)

data. Videos that capture activities of interest are first

transformed into 2D-pose skeletons with the SOTA method

OpenPose model [23]. After that, the 2D poses are upgraded

to the 3D pose with the VideoPose3D model [24]. In order

to localize the 3D pose of a frame in the 3D scene, combin-

ing information such as camera intrinsic, Ego-motion, and

estimated Depth map, each 3D pose is then converted to the

full 3D motion presented in 3D space. Finally, by tracking

the acceleration and orientation changes of each joint of the

body in the 3D space, IMUtube can successfully estimate

virtual sensor data from each joint.

2.2.2 Extension work from IMUTube

Extended from this approach, Kwon et al. [25] points

out three situations causing common errors when processing

videos with IMUTube: occlusion and overlaps, motion blur,

and “ghost” recognition. These situations happen when

multiple people are in the same scene, the person moves

much faster than the frame rate, or there are some objects

resembling human structure in the background. To avoid

such errors, they replace the bottom-up approach with a top-

down approach. They first detect human bounding boxes

with a visual person detector such as the YOLO human

detector [26] and the AlphaPose model. Within this box,

the 2D pose will be generated, which solves the problem of

“ghost” recognition by removing the unrelated object be-

hind the scene. For occlusion problems, they exploited oc-

clusion and self-occlusion detection in the scene, and after

that, they re-segment the whole sequence into unoccluded

2D-pose clips which are then further analyzed. They intro-

duce a tuple used for fast movement detection. By setting a

threshold on the changing range of shape, size, and position

of the bounding box of a person in the frame sequence, the

pipeline is capable of discarding the frame, which may cause

errors.

2.2.3 CROMOSim

Based on the idea of simulating virtual sensor data from

IMUTube, Hao et al. proposed their own pipeline named

Cross-modality Inertial Measurement Simulator (CRO-

MOSim). With the observation that the IMUTube approach

is confined to skeleton body representation, they intended

to develop a new framework that supports arbitrary user-

specified placement and orientation of target sensors pro-

vided with high fidelity virtual data. To achieve this objec-

tive, unlike IMUTube, CROMOSim introduces 3D skinned

multi-person linear (SMPL) models [27] to represent 3D hu-

man body poses. The SMPL model generates a 3D hu-

man body with a fine-grained full-body tri-mesh. In such

a model, the virtual IMU sensor can capture realistic mo-

tion reflecting soft-tissue dynamics in a specific location.
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Fig. 1: Workflow of this study. The input Video is first preprocessed by face cropping models. After that, the video data

is used to estimate head motion data by head motion estimation models. The output estimated motion data is then be

compared with the ground truth data collected by IMU sensor.

Their proposed system constructs a 3D human body with

two aspects: reconstruction of human global displacement

and rotation and estimation of 3D in-place human motion

and body shape. First, with the combination of Robust

CVD [28] and OpenPose [23], they located the joint position

of the person in the frame. After that, the SOTA method

is used to directly estimate realistic 3D human poses and

shapes. VIBE [29] is used to extract 3D body poses in a

global frame and shape parameters from video data, which

is then used in the generation of SMPL body meshes. Due

to the noisy result of the previous step, the direct calcula-

tion of accelerations and angular velocities on SMPL models

could be erroneous. Thus, they designed a neural network

model to estimate the virtual IMU data.

These previous papers provide the SOTA solution for IMU

simulation and its optimization methods, but all focus on

body movement IMU data simulation. In this regard, we

want to know the performance of the current head motion

estimation model performance on estimating virtual data

from video.

3. Proposed Method

This section introduces the process of data creation, crop-

ping videos, and head motion data extraction.

Before feeding video data to head motion estimation mod-

els, We first exploit the face tracking function in the work

of Syncnet [30] to crop frames in videos to frames only fo-

cus on the participant’s face. As for head motion estimation

models, we choose one model from each of the landmark-free

methods (6DRepNet) and landmark-based methods (Open-

Face). Finally, we performed a performance analysis on the

result data in both the frequency domain and the time do-

main. Mel Frequency Cepstral Coefficients (MFCC) is used

for frequency-domain analysis. As for time domain analysis,

dynamic time warping (DTW) is applied. The workflow is

shown in Fig. 1.

3.1 Data Creation

As Fig. 2 shows, the participant is asked to wear glasses

equipped with an IMU sensor and performs nodding gestures

randomly under instruction. We use the standard sensor,

(a) Front view (b) Side view

Fig. 2: View of sensor setting

the Metamotions 10-axis IMU sensor*1. Since the sampling

frequency of the virtual motion data by head motion esti-

mation models is dependent on the video, which is usually

about 30 fps, we set our gyro-data sampling rate at 25Hz,

which is supported by Metamotions. In the meantime, we

record the video with webcams. The video data is then

downsampled to 25Hz.

3.2 Face Tracking

Facetrack aims to solve the common lip-sync problem,

which usually happens in TV broadcasting. Facetrack pro-

vided a language-independent and speaker-independent so-

lution – SyncNet, which uses only the video and the audio

streams. Their main contribution is introducing the Con-

vNet Architecture and a complete data processing pipeline

that does not require labeled data. SyncNet contains two

asymmetric streams for audio and video. For the audio

stream, the input MFCC type data is first encoded as a

heatmap image. The VGG-M layer architecture is then

applied to process the heatmap image. For the Visual

stream, the input frames are transformed into gray-scaled

images which contain the mouth regions of speakers. Chung

and Zisserman’s architecture [31] is applied to extract fea-

tures from a video. The contrastive loss is used as a loss

function, which ensures that the output of the audio and

video networks are similar for genuine pairs and different

for false pairs. The SyncNet processing pipeline is based

on Chung and Zisserman [31]. Shot boundaries are deter-

mined by comparison between color histograms of consecu-

*1 METAMOTIONR: A wearable device that offers real-time and
continuous monitoring of motion and environmental sensor
data – https://mbientlab.com/metamotionr/
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(a) Subject 1 (b) Subject 2 (c) Subject 3

Fig. 3: Waveform of data from Sensor and OpenFace

(a) Subject 1 (b) Subject 2 (c) Subject 3

Fig. 4: Waveform of data from Sensor and 6DRepNet

tive frames [32]. After the HOG-based face detection [33] is

performed, frames of detected face are then grouped using

a KLT tracker [34]. Here we apply this preprocess method

in our study.

3.3 OpenFace 2.0

OpenFace 2.0 is a tool designed for researchers in facial

behavior analysis. OpenFace 2.0 provides functions such as

facial landmark detection, head pose estimation, gaze esti-

mation, and facial expression prediction. For facial land-

mark detection, OpenFace 2.0 utilize Convolution Experts

Constrained Local Model (CE-CLM) [35], which includes

the Point Distribution Model (PDM) to capture landmark

shape variations and patch experts to model local appear-

ance variations of each landmark. With the detected fa-

cial landmark, the accurate head pose can be estimated by

solving the perspective-n-point problem [36]. In order to

estimate eye gaze, OpenFace 2.0 detect eyelids, iris, and

the pupil by exploiting a Constrained Local Neural Field

(CLNF) landmark detector [37]. The detected pupil and the

location of the eye are used to compute the eye gaze vector

for each eye. As for facial expression recognition, OpenFace

2.0 uses the AU recognition framework by Baltrušaitis et

al [38]. Linear kernel SVM are applied; they demonstrated

that, despite their outdatedness, it is still competitive with

other deep learning methods.

The output of OpenFace 2.0 includes landmarks location

of eyes and faces, eye gaze vector and angles, several facial

action units, head position and facing angle, etc. Because

our work’s objective is to predict the nodding motion of the

attendants, here we only use the estimated head facing an-

gle, which is presented as 3-axis vector (poseRx, poseRy,

poseRz).

3.4 6DRepNet

Unlike previous work such as OpenFace 2.0, recent

work applies landmark-free methods to estimate head pose.

Landmark-based methods have the disadvantage that head

motion angle detection is dependent on the correctness

of landmark prediction, so they often suffer from the er-

roneous prediction of landmark position due to occlusion

and extreme rotation in the video. In such an aspect, re-

searchers provide different solutions based on deep neural

networks to extract head motion data. 6DRepNet adopted

the landmark-free method in their work. Previously, Zhou

et al. [39], observed that the representation of rotation with

four or fewer dimensions causes the discontinuity. However,

most existing work applies quaternions or Euler angles as

representations of rotation. Therefore, instead of applying

quaternions and Euler angle representation, they used the

rotation matrix. The matrix Representation has the orthog-

onality constraint RRT = I. To enforce the output keep-

ing its orthogonality, they follow the approach of Zhou et

al. [39], which reduces the rotation matrix to a 6D rotation

representation. Their work shows better results compared

to other landmark free works both on the AFLW2000 [40]

dataset and BIWI [41] dataset.

4. Evaluation

In this section, we will evaluate the performance of current

head movement estimation models.

Since Openface and 6DRepNet target the human facing

direction, their output data are both Euler angles. To ex-

tract gyro data from these outputs, We calculate the gyro

data from Euler angle data by simple subtraction between

each sample. The result gyro data is very noisy, so we filter

the gyro data with a low-pass filter. Finally, we perform an
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Table 1: DTW distance (Senor - OpenFace)

subject ID x-axis y-axis z-axis Avg
1 11.291 10.722 14.260 12.091
2 6.336 19.382 7.506 11.074
3 8.725 13.500 13.639 11.954

Table 2: DTW distance (Senor - 6DRepNet)

subject ID x-axis y-axis z-axis Avg
1 7.969 6.608 18.599 11.058
2 5.714 15.516 6.072 9.100
3 6.939 10.771 13.946 10.552

analysis on data from both the model and the ground truth

data we collected from the IMU sensor in the time domain

and frequency domain.

4.1 Time Domain Analysis

Figure 3 shows the waveform of the collected gyro data

from the sensor and the estimated data from OpenFace. For

each subfigure, the left is gyro data from the sensor and

the right is from OpenFace. Similarly, Figure 4 shows the

waveform of the collected gyro data from the sensor and es-

timated data from 6DRepNet. Both of the figures contain

data performed by 3 different subjects. It is easy to see

that the estimated data from both models successfully re-

main the pattern of movement in every case. The data from

6DRepNet show a more noisy result compared to OpenFace.

However, although 6DRepNet seems to be noisy in the wave-

form, it shows better performance when we compute DTW,

as shown in Tables 1, 2. This is reasonable since OpenFace

often suffers from occlusion error compared to the 6DRep-

Net method.

4.2 Frequency Domain Analysis

For the frequency domain, we select Mel frequency cep-

stral coefficients (MFCCs) as our measure method. Librosa

library*2 is applied to calculate Mel coefficients of the gyro

data. We choose the first 12 coefficients from the 20 co-

efficients, which is the default output setting of librosa li-

brary. The result is shown in Fig. 5 and Fig.6. 6DRep-

Net still shows better performance compared to the result

of OpenFace. We also observe that the model’s performance

on the Y-axis (yaw) is worse compared to other axes (roll

and pitch).

5. Conclusion

In this paper, we evaluate the accuracy of the gyro data

estimated by two methods, the landmark-based method

(OpenFace) and the landmark-free method (6DRepNet), by

comparing with the data from the IMU sensor. The result

shows that these existing models are capable of correctly

capturing the head motion of the user from video. Based

on this result, we will propose a generative compensation

model that is expected to take the output of these existing

models and generate gyro data with higher fidelity.

*2 https://librosa.org/doc/main/index.html
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