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Abstract: Inertial measurement unit (IMU) data have been utilized in human activity recognition (HAR).
In recent studies, deep learning recognition for IMU data has caught researchers’ attention for the capability
of automatic feature extraction and accurate prediction. On the other hand, the challenge of data collection
and labeling discourages researchers to step into it. IMUTube provides a solution by building up a pipeline
to estimate virtual IMU data from YouTube videos for body motion. For head motion data, several methods,
such as OpenFace 2.0 provide the function of predicting facial landmarks and calculating head facing angle
from video. However, to our knowledge, there is no study focusing on estimating IMU data from human
head motion. In our previous work DisCaaS, we created the M3B dataset which contains IMU and 360-
degree video data from the meeting. We exploit head motion data extraction models to predict participants’
nodding and speaking gestures. In order to further improve the performance of nodding recognition, in this
paper, we are interested in understanding the quality of estimated gyro data calculated from these existing
head motion models. We investigate the difference between the motion data estimated from video and those
measured by a 9-axis sensor not only in the time domain but also in the frequency domain. Finally, we
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discuss the future direction of the result.

1. Introduction

Recent years, under influence of COVID-19, the number of
online meetings has increased noticeably. According to the
meetings statistics provided by Zippa [1], there are around
55 million meetings held each week in the United States.
That means over a billion of meetings are held per year.
However, although employees spent such amount of times
and energy on meetings, if the meeting turns out to be un-
productive, it becomes a huge waste of companies’ resources.
As their research shows, 24 billion is a considerable amount
of productive work hours being lost. Without a doubt, the
requirement to improve the productivity and efficiency of
meetings is crucial.

After the publication survey, several characteristics have
been found to be determinative of the behavior of partici-
pants during the meeting. These can be concluded to three
categories: appearances [2], verbal information [3], and non-
verbal information [4]. Our previous work DisCaa$ [5] aimed
to use not content-sensitive information to protect users’ pri-
vacy, in other words, we applied a sensor device that does
not collect the text or content of a meeting. Meanwhile, we
also want to ensure the system’s reproductivity, so a con-
tactless device is selected.

In human activity recognition (HAR), researchers are at-
tracted by the magnificent performance of deep learning so-

lutions on sensor-based tasks. However, the challenge of
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data collection and labeling discourages researchers from
exploring sensor-based applications based on Deep Learn-
ing methods. In order to solve the data sparsity problem
in this field, several researchers start to propose solutions
that simulate IMU data from video. OpenFace [6] estimates
the facial and eye landmarks’ location of the person in the
video. Based on landmark information, they provide func-
tions including head pose estimation, gaze estimation, and
facial expression prediction. IMUtube [7] transforms the full
body of each person in a video into a skeleton body in 3-
dimensional space. With the full 3D motion information,
they tracked the acceleration and orientation changes in the
body’s joints, and extract the virtual IMU information from
the video. Compared to IMUtube, recent research, CRO-
MOSim [8], emphasizes that instead of simulation based on
skeleton structure, they simulated virtual IMU data based
on 3D body extracted from 3D-skinned models. The sensor
position can be located closer to reality, which enables the
system to simulate virtual sensor data with higher fidelity.

Inspired by these virtual IMU extraction approaches, Dis-
CaaS extracts facial landmark position data and head mo-
tion data from video with OpenFace tool kits. We used ma-
chine learning models to conduct prediction of participants’
gestures on estimated data. However, since the method of
recognizing the nodding gesture based on estimated head
motion data did not reach the expected performance, we
want to understand the fidelity of gyro data estimated from
OpenFace.
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2. Related Work

2.1 Meeting Analysis

Meeting analysis can be based on three aforementioned
features: Participant Appearance, Verbal Communication,
and Nonwverbal Communication.
2.1.1 Participant Appearance

[2,9,10] shows the importance of appearance such as

age possesses a strong relationship with forgiveness and the
number of counteractive behaviors. They also show how for-
giveness and counteractive behaviors influence the team’s
harmony and productivity. Gent et al. [11] proposed a
method for estimating the age-based facial aging patterns
on FG-Net Aging [12] and the MORPH [13] Database. They
extracted facial features with the appearance model [14], af-
ter which these features were processed by SVM to obtain
the estimated age [15].
2.1.2 Verbal Communication

In verbal communication, context, pronunciation, vocal
expression, and Speaking Duration are some import features
that impact the quality of a meeting [3,16,17]. Therefore,
there are some works focusing on detection of these fea-
tures. For context, Yu and Dang [18] have proposed auto-
matic speech recognition (ASR) to convert speech to text.
For pronunciation, Zhang et al. [19] proposed a new end-
to-end ASR system based on the hybrid connectionist tem-
poral classification and attention (CTC/attention) architec-
ture to improve advanced automatic pronunciation error de-
tection (APED) algorithms. The new system was a suitable
general solution for L1l-independent computer-assisted pro-
nunciation training (CAPT). For vocal expression, Zhao
et al [20] proposed ROC, which is an online platform sys-
tem allows ubiquitous access to rate people’s communication
skills. The rating system served as a feedback system that
gradually improved the communication skills of the partic-
ipants. Regarding the duration of the speech, our previous
work DisCaaS applied OpenFace to achieve the detection of
the duration of the speech of the participants.
2.1.3 Nonverbal Communication

For nonverbal communication, Pham et al. [21] proposed
the estimation of 3D poses from a single RGB camera, which
estimates body posture and activities using a camera. Zhao
et al.’s ROC speak system include smile detection in their
automated feedback process to analyze the smile intensity
of the attendants. Zhang et al. proposed eye contact detec-
tion using a camera. DisCaaS [22] provide the function of
nodding detection by a camera.

2.2 IMU Data Simulation

With the intention of solving the problem of data scarcity
in the HAR field, recently researchers proposed methods
that extract IMU data from video data. The most rep-
resentative work is IMUTube [7], which combines multiple
methods into a complete pipeline to extract IMU data from
the readily available YouTube resource. Inspired by IMU-
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Tube, other researchers proposed some modifications based
on their method to improve the accuracy of virtual IMU
data. For head motion data, these methods provide head
pose estimation.
2.2.1 IMUtube

IMUTube aims at converting video data collected from
social media platforms into usable virtual sensor (IMU)
data. Videos that capture activities of interest are first
transformed into 2D-pose skeletons with the SOTA method
OpenPose model [23]. After that, the 2D poses are upgraded
to the 3D pose with the VideoPose3D model [24]. In order
to localize the 3D pose of a frame in the 3D scene, combin-
ing information such as camera intrinsic, Ego-motion, and
estimated Depth map, each 3D pose is then converted to the
full 3D motion presented in 3D space. Finally, by tracking
the acceleration and orientation changes of each joint of the
body in the 3D space, IMUtube can successfully estimate
virtual sensor data from each joint.
2.2.2 Extension work from IMUTube

Extended from this approach, Kwon et al. [25] points
out three situations causing common errors when processing
videos with IMUTube: occlusion and overlaps, motion blur,
and “ghost” recognition. These situations happen when
multiple people are in the same scene, the person moves
much faster than the frame rate, or there are some objects
resembling human structure in the background. To avoid
such errors, they replace the bottom-up approach with a top-
down approach. They first detect human bounding boxes
with a visual person detector such as the YOLO human
detector [26] and the AlphaPose model. Within this box,
the 2D pose will be generated, which solves the problem of
“ghost” recognition by removing the unrelated object be-
hind the scene. For occlusion problems, they exploited oc-
clusion and self-occlusion detection in the scene, and after
that, they re-segment the whole sequence into unoccluded
2D-pose clips which are then further analyzed. They intro-
duce a tuple used for fast movement detection. By setting a
threshold on the changing range of shape, size, and position
of the bounding box of a person in the frame sequence, the
pipeline is capable of discarding the frame, which may cause
errors.
2.2.3 CROMOSiIm

Based on the idea of simulating virtual sensor data from
IMUTube, Hao et al. proposed their own pipeline named
Cross-modality Inertial Measurement Simulator (CRO-
MOSim). With the observation that the IMUTube approach
is confined to skeleton body representation, they intended
to develop a new framework that supports arbitrary user-
specified placement and orientation of target sensors pro-
vided with high fidelity virtual data. To achieve this objec-
tive, unlike IMUTube, CROMOSim introduces 3D skinned
multi-person linear (SMPL) models [27] to represent 3D hu-
man body poses. The SMPL model generates a 3D hu-
man body with a fine-grained full-body tri-mesh. In such
a model, the virtual IMU sensor can capture realistic mo-
tion reflecting soft-tissue dynamics in a specific location.
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Fig. 1: Workflow of this study. The input Video is first preprocessed by face cropping models. After that, the video data

is used to estimate head motion data by head motion estimation models. The output estimated motion data is then be

compared with the ground truth data collected by IMU sensor.

Their proposed system constructs a 3D human body with
two aspects: reconstruction of human global displacement
and rotation and estimation of 3D in-place human motion
and body shape. First, with the combination of Robust
CVD [28] and OpenPose [23], they located the joint position
of the person in the frame. After that, the SOTA method
is used to directly estimate realistic 3D human poses and
shapes. VIBE [29] is used to extract 3D body poses in a
global frame and shape parameters from video data, which
is then used in the generation of SMPL body meshes. Due
to the noisy result of the previous step, the direct calcula-
tion of accelerations and angular velocities on SMPL models
could be erroneous. Thus, they designed a neural network
model to estimate the virtual IMU data.

These previous papers provide the SOTA solution for IMU
simulation and its optimization methods, but all focus on
body movement IMU data simulation. In this regard, we
want to know the performance of the current head motion
estimation model performance on estimating virtual data
from video.

3. Proposed Method

This section introduces the process of data creation, crop-
ping videos, and head motion data extraction.

Before feeding video data to head motion estimation mod-
els, We first exploit the face tracking function in the work
of Syncnet [30] to crop frames in videos to frames only fo-
cus on the participant’s face. As for head motion estimation
models, we choose one model from each of the landmark-free
methods (6DRepNet) and landmark-based methods (Open-
Face). Finally, we performed a performance analysis on the
result data in both the frequency domain and the time do-
main. Mel Frequency Cepstral Coefficients (MFCC) is used
for frequency-domain analysis. As for time domain analysis,
dynamic time warping (DTW) is applied. The workflow is
shown in Fig. 1.

3.1 Data Creation

As Fig. 2 shows, the participant is asked to wear glasses
equipped with an IMU sensor and performs nodding gestures
randomly under instruction. We use the standard sensor,
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(a) Front view

(b) Side view

Fig. 2: View of sensor setting

the Metamotions 10-axis IMU sensor™!. Since the sampling
frequency of the virtual motion data by head motion esti-
mation models is dependent on the video, which is usually
about 30 fps, we set our gyro-data sampling rate at 25Hz,
which is supported by Metamotions. In the meantime, we
record the video with webcams. The video data is then

downsampled to 25Hz.

3.2 Face Tracking

Facetrack aims to solve the common lip-sync problem,
which usually happens in TV broadcasting. Facetrack pro-
vided a language-independent and speaker-independent so-
lution — SyncNet, which uses only the video and the audio
streams. Their main contribution is introducing the Con-
vNet Architecture and a complete data processing pipeline
that does not require labeled data. SyncNet contains two
For the audio
stream, the input MFCC type data is first encoded as a
The VGG-M layer architecture is then
For the Visual
stream, the input frames are transformed into gray-scaled

asymmetric streams for audio and video.

heatmap image.

applied to process the heatmap image.

images which contain the mouth regions of speakers. Chung
and Zisserman’s architecture [31] is applied to extract fea-
tures from a video. The contrastive loss is used as a loss
function, which ensures that the output of the audio and
video networks are similar for genuine pairs and different
for false pairs. The SyncNet processing pipeline is based
on Chung and Zisserman [31]. Shot boundaries are deter-

mined by comparison between color histograms of consecu-

*I METAMOTIONR: A wearable device that offers real-time and

continuous monitoring of motion and environmental sensor
data — https://mbientlab.com/metamotionr/
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Fig. 4: Waveform of data from Sensor and 6DRepNet

tive frames [32]. After the HOG-based face detection [33] is
performed, frames of detected face are then grouped using
a KLT tracker [34]. Here we apply this preprocess method
in our study.

3.3 OpenFace 2.0

OpenFace 2.0 is a tool designed for researchers in facial
behavior analysis. OpenFace 2.0 provides functions such as
facial landmark detection, head pose estimation, gaze esti-
mation, and facial expression prediction. For facial land-
mark detection, OpenFace 2.0 utilize Convolution Experts
Constrained Local Model (CE-CLM) [35], which includes
the Point Distribution Model (PDM) to capture landmark
shape variations and patch experts to model local appear-
ance variations of each landmark. With the detected fa-
cial landmark, the accurate head pose can be estimated by
solving the perspective-n-point problem [36]. In order to
estimate eye gaze, OpenFace 2.0 detect eyelids, iris, and
the pupil by exploiting a Constrained Local Neural Field
(CLNF) landmark detector [37]. The detected pupil and the
location of the eye are used to compute the eye gaze vector
for each eye. As for facial expression recognition, OpenFace
2.0 uses the AU recognition framework by Baltrusaitis et
al [38]. Linear kernel SVM are applied; they demonstrated
that, despite their outdatedness, it is still competitive with
other deep learning methods.

The output of OpenFace 2.0 includes landmarks location
of eyes and faces, eye gaze vector and angles, several facial
action units, head position and facing angle, etc. Because
our work’s objective is to predict the nodding motion of the
attendants, here we only use the estimated head facing an-
gle, which is presented as 3-axis vector (poseRx, poseRy,
poseRz).

© 2022 Information Processing Society of Japan

3.4 6DRepNet

Unlike previous work such as OpenFace 2.0, recent
work applies landmark-free methods to estimate head pose.
Landmark-based methods have the disadvantage that head
motion angle detection is dependent on the correctness
of landmark prediction, so they often suffer from the er-
roneous prediction of landmark position due to occlusion
and extreme rotation in the video. In such an aspect, re-
searchers provide different solutions based on deep neural
networks to extract head motion data. 6DRepNet adopted
the landmark-free method in their work. Previously, Zhou
et al. [39], observed that the representation of rotation with
four or fewer dimensions causes the discontinuity. However,
most existing work applies quaternions or Euler angles as
representations of rotation. Therefore, instead of applying
quaternions and Euler angle representation, they used the
rotation matrix. The matrix Representation has the orthog-
onality constraint RRT = I. To enforce the output keep-
ing its orthogonality, they follow the approach of Zhou et
al. [39], which reduces the rotation matrix to a 6D rotation
representation. Their work shows better results compared
to other landmark free works both on the AFLW2000 [40]
dataset and BIWI [41] dataset.

4. Evaluation

In this section, we will evaluate the performance of current
head movement estimation models.

Since Openface and 6DRepNet target the human facing
direction, their output data are both Euler angles. To ex-
tract gyro data from these outputs, We calculate the gyro
data from Euler angle data by simple subtraction between
each sample. The result gyro data is very noisy, so we filter
the gyro data with a low-pass filter. Finally, we perform an
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Table 1: DTW distance (Senor - OpenFace)

subject ID | x-axis  y-axis z-axis Avg
1 11.291  10.722 14.260 12.091
2 6.336  19.382  7.506  11.074
3 8.725  13.500 13.639 11.954

Table 2: DTW distance (Senor - 6DRepNet)

subject ID | x-axis  y-axis z-axis Avg
1 7.969 6.608  18.599  11.058
2 5.714 15.516  6.072 9.100
3 6.939  10.771 13.946  10.552

analysis on data from both the model and the ground truth
data we collected from the IMU sensor in the time domain
and frequency domain.

4.1 Time Domain Analysis

Figure 3 shows the waveform of the collected gyro data
from the sensor and the estimated data from OpenFace. For
each subfigure, the left is gyro data from the sensor and
the right is from OpenFace. Similarly, Figure 4 shows the
waveform of the collected gyro data from the sensor and es-
timated data from 6DRepNet. Both of the figures contain
data performed by 3 different subjects. It is easy to see
that the estimated data from both models successfully re-
main the pattern of movement in every case. The data from
6DRepNet show a more noisy result compared to OpenFace.
However, although 6DRepNet seems to be noisy in the wave-
form, it shows better performance when we compute DTW,
as shown in Tables 1, 2. This is reasonable since OpenFace
often suffers from occlusion error compared to the 6DRep-
Net method.

4.2 Frequency Domain Analysis

For the frequency domain, we select Mel frequency cep-
stral coefficients (MFCCs) as our measure method. Librosa
library*? is applied to calculate Mel coefficients of the gyro
data. We choose the first 12 coefficients from the 20 co-
efficients, which is the default output setting of librosa li-
brary. The result is shown in Fig. 5 and Fig.6. 6DRep-
Net still shows better performance compared to the result
of OpenFace. We also observe that the model’s performance
on the Y-axis (yaw) is worse compared to other axes (roll
and pitch).

5. Conclusion

In this paper, we evaluate the accuracy of the gyro data
estimated by two methods, the landmark-based method
(OpenFace) and the landmark-free method (6DRepNet), by
comparing with the data from the IMU sensor. The result
shows that these existing models are capable of correctly
capturing the head motion of the user from video. Based
on this result, we will propose a generative compensation
model that is expected to take the output of these existing
models and generate gyro data with higher fidelity.

*2 https://librosa.org/doc/main/index.html
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