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概要：マルウェアをグレースケール画像に変換し，CNN を用いて分類する手法が注目されている．このよ
うな分類手法は軽量かつ高い精度を示す一方，画像へノイズを加えることで誤分類を引き起こす脆弱性を
持つ．本研究では，画像へのノイズ追加に耐性を持たせるため，分類精度と誤分類検体の予測確信度を目
的関数とした訓練データの構成比最適化手法を提案する．提案手法の有効性を検証するため，ベースライ
ン画像分類器，単一ノイズ種で構成された画像分類器，最適構成の画像分類器の三種を用いて比較実験を
行った．その結果，訓練データへのノイズ追加によって分類精度が改善され，さらに構成比を最適化する
ことで，誤分類検体における予測確信度が抑制され，堅牢性向上に有効なことが示された．

1. はじめに
従来，マルウェアが主に感染対象としていた PCはWin-

dows OS を搭載したものであった．しかし Windows OS

自体のセキュリティ向上やアンチウイルスソフトの普及に
より，Windows OS を狙った攻撃の難易度は高い．その結
果，ここ数年ではインターネットに繋がった監視カメラや
Wi-Fi ルータといった IoT 機器が，新たな主要な攻撃対象
として注目されている．Zscalar が実施した 2023年度の調
査によれば，IoT 機器を対象としたマルウェア攻撃の件数
は，2022年度と比較して 400%以上増加している [1]．IoT

機器のセキュリティ対策に関しては管理者の目が届きづら
い，初期設定のままでの使用等の理由から，攻撃者にとっ
て格好の攻撃対象となっている．
IoT マルウェアの急速な増加の背景には，ソースコード
の一部を改変して作成される亜種マルウェアの存在が挙
げられる．例えば IoT マルウェアである Mirai ではソー
スコードがインターネット上に公開されたことにより，多
数の亜種が作成され，甚大な被害をもたらしたとされてい
る [2]．このような状況を踏まえると，流通しているマル
ウェアの種類や特徴といった動向を把握することが，IoT

マルウェアへの効果的な対策を確立する上で重要である．
なぜならば，動向を的確に捉えることで，現実の脅威に即
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した防御策や検知技術の設計が可能となるためである．
IoT マルウェアの動向を把握する手段として，マルウェ

アの分類が有用である．マルウェアの分類は，オリジナル
のマルウェアとオリジナルの一部を改変して作成されたマ
ルウェアを，1つのマルウェアファミリーとしてグループ
化し，解析対象のマルウェアがどのグループに属するかを
分類するものである．深層学習を用いてマルウェア分類を
行うことにより，高精度かつ人的リソースを消費しない高
速な分類が実現されている [3]．
深層学習を用いたマルウェア分類手法の 1つとして，マル

ウェアを画像化し CNN（Convolutional Neural Network）
をベースとしたモデルで分類する手法が提案されている [3]．
しかし，CNN ベースの画像分類手法は，画像にノイズを
追加することで誤分類を引き起こす脆弱性を持っており，
堅牢性の観点から課題が残されている．堅牢性を向上させ
る基本的な対策として，ノイズを加えた画像を訓練データ
に取り入れ耐性を獲得する方法が考えられるが，ノイズを
加えた画像を訓練データに取り入れると，訓練データの総
数が増加する．訓練データ総数の増加は，計算資源や学習
時間といった学習コストの増大につながる．
学習コストが増大する課題を解決するためには，訓練

データの総数を固定した上で，各ノイズ種別ごとの訓練
データにおける構成比を適切に決定する必要がある．本研
究における構成比とは，各種ノイズ付与手法を適用した訓
練用サンプル群の，データセット内における比率を指す．
そこで本研究では，訓練データの総数固定という制約下

での堅牢性向上を実現することを目的に，訓練データの更
新における構成比算出手法を提案し，その有効性を検討す
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Algorithm 1 マルウェアバイナリの画像化
function create image(binary)

s←
√

sizeof(binary)

image[s][s]← 0

for y = 0 to s− 1 do

for x = 0 to s− 1 do

image[y][x]← binary[y × s+ x]

end for

end for

return image

end function

図 1: マルウェアのグレースケール画像

る．本研究の貢献は，訓練データの総数を増加させずに堅
牢性向上を実現することにより，計算資源や学習時間と
いった学習コストを維持した手法を示した点である．
本稿の構成は以下の通りである．まず，第 2節にて本稿

を理解する上で必要となるマルウェア画像分類手法の原理
について説明する．第 3節ではマルウェア画像分類器の堅
牢性向上に関する関連研究を示し，第 4節で訓練データ更
新における構成比最適化の提案を説明する．第 5節で実験
的評価を行い，最後に第 6節にてまとめとする．

2. マルウェア画像分類手法
本節では，本稿の理解を助けるためのマルウェア画像分

類手法について述べる．

2.1 マルウェアバイナリの画像化
マルウェアバイナリの画像化アルゴリズムを Algo-

rithm 1 に示す．マルウェア画像分類手法では，マルウェ
ア実行形式バイナリの 1バイトを 1ピクセルとしたグレー
スケール画像に変換し，ファイルサイズに応じて一辺の長
さを決定した正方形画像とする．この処理により，バイナ
リの構造を視覚的なパターンとして表現することが可能に
なる．IoT マルウェア実行形式バイナリをグレースケール
画像に変換した例を図 1に示す．ここでAlgorithm 1で
は，マルウェアごとに異なるサイズの画像が生成されるが，
CNN は入力サイズを統一する必要があるため，リサイズ
を行う．

001011110
111101101
110011110
111101011 空セクション追加

0000
0010
1011

分類

分類

Mirai

Gafgyt

誤分類

図 2: 空セクションを用いたノイズの追加の概要

2.2 特徴抽出と分類モデル
変換された画像に対しては，VGG19 などといった既存

の画像分類アーキテクチャを適用し，CNN を用いて特徴抽
出と分類を行う．CNN は画像の局所的なパターンや構造
を自動的に学習できる特性を持ち，マルウェアのファミリ
間に見られるセクション構造やコード分布の違いにより生
じる画像上の特徴を捉えるのに適している．このアプロー
チは，既存研究 [3,4] においても有効性が報告されている．
さらに画像分類モデルに事前学習済みの重みを用いた

ファインチューニングを行うことで，モデルをマルウェア
画像分類タスクに適応させることが可能である．このた
め，限られた学習データにおいても，転移学習の恩恵によ
り精度の向上が期待できる．

2.3 マルウェア画像分類手法の課題
マルウェア画像分類手法には課題も存在する．課題の 1

つとして，軽微な変形や敵対的なノイズの追加によって分
類性能が低下するリスクが挙げられる．
筆者らは，マルウェア解析におけるマルウェア収集経路

を用いた攻撃として，空セクションを用いたノイズの追加
によって誤分類が発生し，ノイズ量の増加によって誤分類
率が増加することを明らかにした [5]．空セクション追加
を用いたノイズ付与の概要を図 2に示す．空セクション
とは，全てのデータが 0であるセクションのことであり，
Algorithm 1を用いてグレースケール画像に変換すると，
黒の領域が増加する．黒の領域の増加が分類におけるノイ
ズとして働き，誤分類が発生していると考えられる．
小久保らは Windows マルウェアに対して敵対的なパッ
チを挿入することによる攻撃を行い，誤分類が発生するこ
とを明らかにした [6]．この手法は，実行ファイルの機能
に影響を与えない範囲で敵対的なノイズを追加するもので
あり，機械学習モデルを用いた Windows マルウェア分類
の脆弱性を明らかにした．
Gu らは Android マルウェアに対してヘッダー部分を

除くセクションを対象に，任意の 1 ピクセルを変更する
One-Pixel Attack [7]を適用することで，Androidマルウェ
ア画像分類器で誤分類が発生することを示した [8]．これ
により極めて小さなノイズの追加であっても，マルウェア
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(a) 空間充填曲線 z-order (b) バイトプロット
図 3: Reilly手法で生成された敵対的サンプル（文献 [10]

より引用）

画像分類器の分類精度に大きな影響を与えることが示さ
れた．
文献 [5, 6, 8] より，軽微な変形や敵対的なノイズの追加

への対策を明らかにすることは，マルウェア画像分類手法
の堅牢性向上における重要な研究課題である．

3. 関連研究
3.1 データセット更新による堅牢性向上
Marastoni らはマルウェア画像分類手法の分類精度向上

および難読化されたマルウェアへの耐性を持たせるため，
データ拡張と転移学習を活用する手法を提案している [9]．
この提案では，マルウェアのバイナリコードの一部に難読
化を適用することでデータ数を増やしている．さらに，拡
張したデータセットで CNN や Bi-LSTM などの深層学習
モデルを訓練し，大規模マルウェアデータセットに対して
転移学習させることで，約 98.5% の高い精度を達成した．
Reillyらは GAN（Generative Adversarial Networks）を
用いて，敵対的サンプルを生成し，訓練データに追加する
ことによる堅牢性の向上を提案した [10]．この研究では，
空間充填曲線 z-order やバイトプロットによって変換され
たマルウェア画像を用いた分類器を対象としている．この
手法によって生成された敵対的サンプルを図 3に示す．元
のモデルでは PGD 攻撃によるモデルの正解率が約 95%

から約 4.5% に低下するのに対し，敵対的サンプルを訓練
データに加えたモデルでは，攻撃後の正解率が大幅に回復
し，およそ 70%以上を維持することを示した．
文献 [9, 10] の研究では，マルウェア画像分類手法にお

ける堅牢性向上を目的として，難読化済みデータや敵対的
サンプルを訓練データに追加することでモデルの堅牢性を
向上させている．しかし，これらの研究ではノイズを含む
データを訓練データに追加することのの有効性を示してい
るものであり，ノイズを含むデータをどの程度訓練に用い
るべきかという課題に対しては，議論が行われていない．
これに対し本研究は，訓練データにおける最適な構成比を
明らかにすることで課題を解決する．従来の研究では固定
的に扱われていた訓練データの構成比を本研究では制御可

能とし，モデルの汎化性能と攻撃耐性のバランスを柔軟に
調整することを実現する．

3.2 ノイズ検知・除去による堅牢性向上
Liらは，マルウェア分類における敵対的サンプルへの

耐性を強化するために，ハッシュ変換と DAE（Denoising

Autoencoder）を組み合わせた HashTran-DNN フレーム
ワークを提案した [11]．この手法では，マルウェアサンプ
ルにハッシュ関数を適用し，その後 DAE を用いてノイズ
を除去することで，分類モデルの堅牢性を向上させている．
実験結果から，提案手法が複数の敵対的攻撃手法に対して
有効であることが確認された．
この研究では，特定のノイズや攻撃手法に対する検知・

除去機構を導入することで，マルウェア分類モデルの堅牢
性を高めている．しかし，ノイズに対応する専用の検知・
除去機構を追加することは，システムの複雑化や学習コス
トの増大が懸念される．
これに対し，本研究では，訓練データにノイズを付与し

た画像を加えることで，分類モデルの堅牢性を向上させる
手法を提案する．特に，ノイズを含むデータと通常のデー
タの最適な訓練データ構成比を明らかにすることで，学習
コストの増大を伴わない堅牢性向上を実現する．

3.3 モデル構造変更による堅牢性向上
Raviらは，マルウェア分類の堅牢性を向上させるために，

注意機構を組み込んだ CNN モデルを提案している [12]．
この手法では，マルウェア画像中の重要な領域に焦点を当
てることで，分類精度と堅牢性の向上を図っている．実験
により，提案手法が従来の CNN モデルと比較して，敵対
的攻撃に対する耐性が向上することが示された．
Shao らは，マルウェア画像分類モデルの堅牢性を向上
させるために，深層残差ネットワークとハイブリッド注意
機構を組み合わせた手法を提案している [13]．この手法で
は，チャネル注意機構と空間注意機構を組み合わせること
で，マルウェア画像中の重要な特徴に焦点を当て，不要な
情報を抑制することを目的としている．実験により，提案
手法が従来の CNN モデルと比較して，分類精度と堅牢性
の両面で優れていることが示された．
これらの研究では，マルウェア画像中の重要な領域に焦

点を当てるために注意機構を導入しており，モデル構造が
複雑化している．これにより，分類精度や堅牢性の向上が
報告されている一方で，計算グラフが深くなり，パラメー
タ数や演算量が増加するため，学習コストも増大するとい
う課題がある．
これに対し，本研究ではモデル構造を変更せず，訓練

データの構成比を最適化するという手法を採用している．
このため，注意機構などを追加することなく，学習コスト
の増大を伴わない堅牢性向上を実現している点で，モデル
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図 4: 構成比に基づく訓練データ生成の概要

構造の変更とは異なるアプローチである．

4. 訓練データ更新における構成比最適化の
提案

本研究では，分類精度を最大化しつつ，誤分類検体の予
測確信度を最小化するという，2つの目的を満たす構成比
を多目的最適化によって探索しそれに基づく訓練データで
分類器を作成する手法を提案する．

4.1 構成比の定義
本研究では訓練データの構成比を最適化し，分類器の堅

牢性向上を実現する．本節では構成比の定式化について説
明する．本研究における構成比は以下の n 次元の実数ベク
トルとして定義する．

x = (x1, x2, ..., xn),


∑n

i=1 xi = 1

0 ≤ xi ≤ 1
(1)

n は対象とするノイズ種の数であり，マルウェア画像分類
器に耐性を持たせるノイズの種類に応じて任意に決定す
る．x の各要素は対応するノイズ種が訓練データ全体に占
める割合を示す．

4.2 構成比に基づく訓練データ生成
構成比に基づく訓練データ生成の概要を図 4 に示す．構
成比に基づく訓練データ生成では，まず従来の訓練データ
セットに含まれる各検体に対し，構成比に応じたラベリング
を行う．このラベルは，データセット生成時に付与するノ
イズの種類を示す．ラベリングの方法としては，構成比に
従って訓練データを n 個のグループにランダム分割する．
例えば，耐性を持たせるノイズ種として noiseA，noiseB

がある場合，構成比はx = (original, noiseA, noiseB)とい
う式で表現される．ここで構成比が x = (0.1, 0.2, 0.7)であ
る場合，訓練データの 10%にはノイズ付与なし（Original）
をラベリング，訓練データの 20%には noiseA をラベリン
グ，訓練データの 70%には noiseB をラベリングする．
その後ラベリング結果にしたがって，各検体に対応する

ノイズを加えた画像を生成し，それを新たな訓練データと
することで，訓練データの生成を行う．

4.3 NSGA-IIによる構成比の最適化
本研究では，分類精度の最大化と誤分類検体の予測確信

度の最小化という 2つの目的を満たす構成比を算出するこ
とから，多目的最適化問題として解決を図る．多目的最適
化問題を解決する手法として，NSGA-II [14]を使用し，構
成比を進化的に最適化させる．
NSGA-IIとは，遺伝的アルゴリズムを単一目的の最適化

問題から多目的の最適化問題へ拡張したものである．この
アルゴリズムではまず，個体群に対して複数の目的関数の
値を評価し，非優劣ソートという手法で個体をランク付け
する．非優劣ソートでは，複数の目的において他の個体に
劣っていない個体を，同じランクのグループとしてまとめ
る．このようにして，個体は目的の達成度に応じて複数の
ランクに分類される．次に，同じランクに属する個体同士
の分布のばらつきを示す混雑度を算出する．混雑度が大き
い個体は，他の個体と比べて多様性が高い解であり，探索
範囲の拡大に寄与する．その後，非優劣ソートによるラン
ク付けの結果と混雑度をもとに，混雑度トーナメント選択
を行い，次世代の個体を生成するための親個体を選択する．
この選択では，ランクが高い個体が優先され，同じランク
の場合は混雑度が大きい個体が選ばれる．本研究では，構
成比を示す n 次元の実数ベクトルの各要素を NSGA-IIに
おける遺伝子，ベクトルを NSGA-IIにおける個体とする．
構成比の最適化に必要となる分類精度の取得は，各構成

比に基づいて構成された訓練データでモデルを学習した
後，検証データに対して予測を行い，正しく分類された検
体の割合として算出する．誤分類検体の予測確信度は，検
証データの予測において誤って分類された各検体に対して
モデルが予測したクラスの最終出力層の値を集計し，その
平均値として算出する．

4.4 最優秀個体の選定
最優秀個体の選定にあたっては，まず NSGA-IIによっ

て得られた各試行のパレート最適解を収集する．次に収集
したパレート最適解に対し，重みに基づいたスコアを算出
する．その後スコアが最も高かった個体を最優秀個体とし
て採用する．スコアの算出方法を以下に示す．

Score = α ·Accuracy − β · Confidence (2)

α，β は分類精度の最大化を重視するか，誤分類検体の予
測確信度の最小化を重視するかによって調整可能だが，本
研究では両方の目的関数を同等に重視する方針とし，それ
ぞれ 0.5に設定する．

5. 評価
本研究では訓練データの構成比を最適化する提案手法に

よって作成された最適構成分類器の有効性を評価する．評
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表 1: ラベリングの内訳
ファミリ名 検体数 割合（%）
benign 354 3.16

Mirai 5444 48.55

Gafgyt 3779 33.70

Tsunami 266 2.37

Rootkit 279 2.49

Generica 770 6.87

Flooder 118 1.05

Dofloo 204 1.82

表 2: 抽出したデータセットの内訳
データタイプ 検体数 ファミリあたりの検体数
訓練用 805 161

検証用 115 23

テスト用 230 46

価ではまず，ノイズ追加による攻撃に耐性のないベースラ
イン画像分類器と単一ノイズ種で構成された分類器をそれ
ぞれ作成し比較する．その後ベースライン画像分類器と最
適構成分類器を比較する．これにより，訓練データへのノ
イズ追加による性能の向上と，訓練データへの最適化され
た複数種のノイズ追加によって構成される分類器の有効性
を検証する．
評価では，事前に耐性を持たせるノイズ追加手法を定め

る必要がある．このため，評価では空セクションの追加 [5]

を使用する．具体的には，GNU Binutils の objcopy コマ
ンドを用いて，ELF ファイルに新たなセクションを付加す
る．セクション追加時には，noload および readonly フラ
グを設定しており，実行時にロードされず，書き込みも行
われないことを保証している．これにより，実行可能性を
維持したノイズ追加手法を適用している．

5.1 使用するデータセット
本研究では，Olsen らによって提供されたラベル付き

IoT マルウェアデータセット [15]を使用した．このデー
タセットには複数アーキテクチャの IoT マルウェアが含
まれている．アーキテクチャごとに画像特徴が大きく異な
るため，マルウェア画像分類器の作成においては，単一の
アーキテクチャを使用する必要がある．そこで評価にお
いては，Intel 80386 アーキテクチャの検体を対象とした．
Intel80386 アーキテクチャにおけるマルウェアファミリご
との検体数の内訳を表 1 に示す．分類対象とするマルウェ
アファミリは，検体数が十分に存在する Mirai，Gafgyt，
Tsunami，Rootkit，Generica の 5種とし，各ファミリか
らランダムに 230検体を抽出した．これにより，各ファミ
リの検体数が均等となるよう調整した実験用のデータセッ
トを新たに作成した．実験用のデータセットにおける検体
数の内訳を表 2に示す．抽出後のデータは，訓練用 70%，

表 3: ベースライン画像分類器の分類性能
Null Size Accuracy Precision Recall F1-score Confidence

0% 0.852 0.864 0.852 0.852 0.810

20% 0.647 0.747 0.647 0.620 0.905

40% 0.578 0.639 0.578 0.565 0.790

60% 0.530 0.612 0.530 0.545 0.838

80% 0.395 0.573 0.395 0.386 0.888

Average 0.600 0.687 0.600 0.594 0.846

テスト用 20%，検証用 10%の割合で分割した．訓練用はモ
デルの学習に，テスト用は作成した分類器の評価に，検証
用は NSGA-IIによる最適化に必要となる分類精度と誤分
類検体の予測確信度の算出に用いた．

5.2 ベースライン画像分類器の作成
マルウェア画像分類器の作成には，Google Colab 環境
上で TensorFlow および Keras を用いた．ベースモデルと
して VGG19 を採用し，ファインチューニングすることで
作成した．モデルの訓練では，損失関数として categori-

cal crossentropy を，最適化手法として Adam を採用し，
エポック数は 30，バッチサイズは 8とした．ベースライン
分類器の訓練には，空セクションが追加されていない画像
のみを使用し，訓練データへのノイズ追加がされていない
従来データセットでの分類器作成を再現した．
作成したベースライン画像分類器をテスト用データを用

いて評価した．分類性能を表 3に示す．表における Accu-

racy は分類精度，Precision は適合率，Recall は再現率，
F1-Score は適合率と再現率の調和平均を表す．各指標は
式 (3)～(6)で算出した．

Accuracy =
TP + TN

TP+ FP + TN+ FN
(3)

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1-score = 2 · Precision · Recall
Precision + Recall

(6)

表 3で，Confidence は誤分類検体における予測確信度の
平均を表している．本研究における分類モデルでは最終
出力層に活性化関数として softmax 関数を適用しており，
各クラスに属する確率を出力する．誤分類検体における予
測確信度は，モデルが誤って分類したクラスに対応する
softmax 出力の値を取得する．
表を見ると，先行研究 [5]と同様に，追加する空セクショ
ン量の増加によって分類精度は低下しており．F1-score は
0%の 0.852から 80%の 0.395まで低下した．さらに追加す
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図 5: ノイズ追加画像の割合に対する分類精度の変化

表 4: 比較対象となる分類器の分類性能
Null Size Accuracy Precision Recall F1-score Confidence

0% 0.873 0.876 0.873 0.874 0.901

20% 0.773 0.808 0.773 0.766 0.944

40% 0.843 0.850 0.843 0.842 0.902

60% 0.830 0.849 0.830 0.829 0.883

80% 0.921 0.926 0.921 0.922 0.800

Average 0.848 0.862 0.848 0.847 0.886

る空セクション量の増加によって，Confidence は増加して
おり，0%では 0.810だったものが，80%では 0.888となっ
ている．これは，モデルがノイズが追加された画像に対し
ても高い確信をもって誤った予測をしていることを示して
おり，堅牢性が欠如していることがわかる．平均値を見る
と，Accuracy は 0.600，F1-score は 0.594，Confidence は
0.846という性能にとどまっている．提案手法の評価では，
この分類精度を基準に構成比の最適化の有効性を評価す
る．特に，ノイズを含む検体に対しても安定した分類精度
を維持しつつ，誤分類検体における予測確信度を低く抑え
ることが可能かどうかを検証することで，提案手法の有効
性を明らかにする．

5.3 単一ノイズ種で構成された画像分類器の作成
構成比の最適化アプローチは堅牢性向上が見込める一

方，複数のノイズ種を用いることによる学習コストや設計
の複雑さが課題となる．もし，単一のノイズ種で構成され
た画像分類器で十分な堅牢性を実現できれば，その方が堅
牢性向上において効率的である．
そこで本研究では，ベースライン画像分類器とは異なる

分類器として，単一ノイズ種を訓練データへ追加した画像
分類器を作成した．作成においては，空セクション追加に
よって生成したノイズ追加画像の割合を，0%，10%，20%，
30%，…，100%と変化させた分類器の分類精度を比較し．
最大となった分類器を選択した．
作成の際には，ベースライン画像分類器と同様のモデル

構造，損失関数，最適化手法，ハイパーパラメータを用い

た．本評価においては，単一ノイズ種とする空セクション
量は，元の IoT マルウェアのファイルサイズの 80%に設
定した．
図 5に評価結果を示す．グラフの横軸は訓練データにお
けるノイズ追加画像の割合，縦軸は分類精度である．評価
結果で示されているように，ノイズ追加画像が訓練データ
の 80%を占める構成比において，ノイズ追加前および追加
後の検体に対する分類精度の平均 76.73%となり，最も高
い分類精度を示した．
以上の理由から，本研究では構成比を（0.200, 0.000,

0.000, 0.000, 0.800）とした分類器を，単一ノイズ種で構成
された画像分類器として採用する．先述の構成比で作成し
た分類器の分類性能を表 4 に示す．
表を見ると，ベースライン画像分類器と比較して空セク

ション追加の影響を受ける状況下においても高い分類精度
を維持できている．特に空セクション量が 80%の検体に
対しては Accuracy が 0.921，F1-score が 0.922とベース
ライン画像分類器からの改善が見られる．平均値において
も，Accuracy が 0.848，F1-score は 0.847といずれもベー
スライン画像分類器を上回る結果となった．
一方，空セクション量が 20%～60%といった比較的少量
の空セクション追加に対する分類精度はベースライン画像
分類器と比べれば向上しているものの，その改善幅は 80%

に比べれば限定的であり，精度向上が 80%のノイズの検
体に偏っている傾向が見られる．さらに，Confidence は
20%で 0.944，40%で 0.902 と非常に高く平均値において
も，ベースライン画像分類器からの増加が見られた．これ
は分類器が軽度な空セクション追加に対して過剰な自信を
持ち，堅牢性がベースライン画像分類器よりも低い可能性
を示している．
まとめると，単一ノイズ種での訓練データ構成は画像分

類器の分類精度を高めるものであるが，画像分類器の堅牢
性を低下させる要因になると考えられる．このため，複数
ノイズ種の構成比を最適化し，ベースライン分類器からの
堅牢性の低下を避けつつ，分類精度を向上させることが望
まれる．

5.4 構成比の最適化
本研究では NSGA-IIを使用して構成比の最適化を行う．

NSGA-IIによる最適化の際には DEAP ライブラリを使用
した実装を行った．設定した NSGA-IIのパラメータは，個
体数 32，世代数 5，交叉確率 1.0，突然変異率 0.2 とした．
遺伝子は構成比の 5次元実数ベクトルとした．これは空セ
クションの追加量が異なる 4種のノイズ追加画像と空セク
ションを追加していない画像の構成比を最適化するためで
ある．
評価における構成比の最適化では，空セクションの追加

量を変化させた 4種類のノイズに対する評価を行う．具体
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表 5: 上位 10個体の構成比
x1 x2 x3 x4 x5 Accuracy Confidence

0.12 0.16 0.25 0.30 0.17 0.849 0.776

0.18 0.16 0.23 0.24 0.19 0.816 0.792

0.15 0.14 0.32 0.24 0.15 0.800 0.777

0.33 0.10 0.26 0.13 0.19 0.793 0.775

0.34 0.13 0.05 0.36 0.12 0.805 0.787

0.18 0.11 0.23 0.30 0.18 0.790 0.785

0.35 0.00 0.25 0.36 0.04 0.809 0.805

0.21 0.54 0.07 0.14 0.03 0.812 0.809

0.06 0.15 0.33 0.10 0.35 0.730 0.731

0.30 0.32 0.29 0.08 0.02 0.734 0.736

的には，元の IoT マルウェアバイナリのファイルサイズ
に対して空セクションが占める割合を 20%，40%，60%，
80%と設定し，それぞれ 4種類のノイズ強度を定義する．
これに加え，空セクションを追加しない元のファイルも含
め，構成比の最適化を行い，その有効性を評価する．
以上のパラメータおよび遺伝子の設定とし 6回の試行で

パレート解を収集した．収集したパレート解には重みづけ
ランキングを実施し，上位 10個体を選定した．収集した
パレート解の分布および上位 10個体のパレート解の分布
を図 6に示す．さらに，上位 10個体のパレート解の構成
比と，それぞれの Accuracy および Confidence を降順に
上から並べた結果を表 5に示す．
図を見ると，Accuracy と Confidence の間には正の相関
関係が見られた．これは，分類精度を向上させることと誤
分類検体の予測確信度を抑制することはトレードオフの
関係にあることを示している．さらに，重みづけランキ
ングを行った結果，上位の個体は Accuracy が 0.8程度，
Confidence が 0.75から 0.8の領域に集中していることが
見られた．
表を見ると，最も高い分類精度を示した個体は，各要素

の値域が 0.1から 0.3となっており，いずれかに極端に偏
ることない構成であった．このような傾向は他の上位個体
にも共通しており，すべての空セクション追加割合を適度
に含めた構成が，分類性能向上に寄与している可能性を示
している．さらに，空セクション量が 40%および 60%の
比率がわずかに高めに設定された個体が上位に多く見ら
れた．これにより，中程度のノイズに対する学習が分類器
の堅牢性向上に有効であることが考えられる．一方で，空
セクション量が 20%および 80%の構成比率が高い構成は，
Accuracy および Confidence がともに低下しており，極端
な構成比が性能劣化を引き起こす可能性を示している．
以上より，構成比の最適化によって，空セクション追加

の程度が異なる多様な検体を同程度の比率で訓練データに
取り入れることが，堅牢性の向上に有効であることが明ら
かとなった．

表 6: 最適構成の画像分類器の分類性能
Null Size Accuracy Precision Recall F1-score Confidence

0% 0.862 0.864 0.862 0.852 0.811

20% 0.867 0.871 0.867 0.854 0.848

40% 0.870 0.880 0.870 0.867 0.839

60% 0.887 0.897 0.887 0.886 0.803

80% 0.870 0.881 0.870 0.868 0.812

Average 0.871 0.879 0.867 0.866 0.823

5.5 最優秀構成比での分類器作成
最終的に選定された最優秀構成比を用いて新たに最適構

成の画像分類器を作成した．最適構成の画像分類器の分類
性能を表 6 に示す．表を見ると，最適構成の画像分類器
はベースライン画像分類器および単一ノイズ種で構成され
た画像分類器と比較して，分類精度の改善が見られた．こ
れは全ての空セクション追加量で安定して高い性能を示し
ており，特に空セクション量が 60%で 0.887，40%で 0.870

となっている．これにより単一ノイズ種で構成された画像
分類器に比べて，中間的な空セクション量への対応力が向
上しており，構成比の最適化により訓練データのバランス
が改善された結果と考えられる．
誤分類検体の予測確信度に着目すると，最適構成分類

器は平均 Confidence が 0.823 と最も低く，0%で 0.811，
60%で 0.803，80%で 0.812など，幅広い空セクション量で
Confidence を抑制しており，単一ノイズ種で構成された画
像分類器と比較して誤分類時に過度な確信を示すことなく
予測の不確かさを適切に反映している．このように，最適
構成分類器は精度だけでなく予測確信度の観点からも最も
信頼性の高い分類器であり，構成比最適化による堅牢性向
上の有効性を示している．

6. おわりに
本稿では，従来の訓練データでは誤分類が発生する画像

へのノイズ追加に対して，分類精度と誤分類検体の予測確
信度の最適化による構成比算出手法を提案し，その有効性
を検討した．
提案手法の有効性を検証するために，ベースライン分類

器，単一ノイズ種で構成された分類器，最適構成の画像分
類器の三種類の分類器を作成し，それぞれの分類性能を比
較した．
評価の結果，ノイズ追加画像の誤分類による分類性能の

低下に対して，訓練データへノイズを追加することにより，
分類精度を改善することができた．さらに，最適化した構
成比によって生成された訓練データを用いて作成された分
類器では，誤分類検体における予測確信度を単一ノイズ種
で構成された分類器と比較して抑制することができた．こ
のため，訓練データの構成比の最適化が画像へのノイズ追
加に対する堅牢性向上に貢献することが明らかとなった．
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(a) 全試行 (b) 上位 10個体
図 6: 収集したパレート最適解の分布

今後は，本手法がより広範なノイズ追加手法に対しても
有効であるかを評価する必要がある．さらに，より多数の
検体やマルウェアファミリを持つデータセットに対しても
本手法が有効であるかを評価する必要がある．
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