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Abstract—To reduce the cost of Internet of Things (IoT)
system deployment, we are focusing on the cost reduction of
device location information setup and developing a room-by-
room device grouping system. In our previous work, we presented
a room-by-room IoT device grouping based on wireless LAN
(WLAN) channel state information (CSI) using unsupervised
learning. The performance in a practical environment, however, is
significantly degraded due to the nonuniform time distributions
of where people stay in each room. In this paper, we present
CSI sampling, namely, a CSI data selection method, relying on
independent component analysis (ICA) to improve the device
grouping performance in a practical environment. An experimen-
tal evaluation conducted in a practical environment reveals that
our CSI sampling greatly improved device grouping performance
with an adjusted Rand index (ARI) of up to 44.9%.

Index Terms—IoT device location information setup, unsuper-
vised learning, independent component analysis (ICA).

I. INTRODUCTION

Internet of Things (IoT) systems are becoming prevalent
due to advances in computing and networking technologies.
IoT systems have been deployed in the industry for telemetry
and factory automation and are now extended to be used in
smart house scenarios.

With a large number of IoT devices, the cost of setup
became a big burden in the IoT system deployment. IoT
systems capable of automatic configuration that mainly focus
on automatic network configuration, known as zero configura-
tion (zeroconf), self-configuration, and automatic provisioning,
have been proposed to reduce the cost of IoT system deploy-
ment [1]–[3]. Semi-automatic network configuration methods
have also been proposed or have already been used [4]–[8].
There are mixed reality (MR) based device coordinators and
automatic device association methods to realize IoT applica-
tions and services [9]–[12].

However, we still need to set up device location information,
resulting in a high cost when there are a large number of
devices. Although the number of IoT devices is limited in
a smart house scenario, a non-expert needs to complete the
device location information setup. Localization techniques
reduce the cost of the device location setup, though, which
requires prerequisites such as a site survey and reference node
installation in an indoor scenario.

This work was supported in part by JSPS KAKENHI Grant Numbers
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To reduce the cost of the device location information setup,
we are developing a room-by-room device grouping system,
which maps devices to groups based on the room where the
device is installed [13]. The device grouping system groups
devices based on the changes in wireless LAN (WLAN)
channel state information (CSI) caused by human movement
using an unsupervised machine learning algorithm. We then
ask a user for the actual location information of each group
to complete the location information setup. Combined with
existing relative localization methods, we can complete the
device location setup for all the devices. For non-experts, i.e.,
in a smart house scenario, we can ask a user for the location
information such as the name of the room where the device
is installed when the device in a group is used. Note that
our focus is on the location information setup for stationary
installed IoT devices. We assume that the location of mobile
IoT devices are estimated by existing localization methods
after we obtain the location of stationary IoT devices.

However, our device grouping system presented in [13]
shows poor performance in a practical environment because
of the nonuniform time distributions of where people stay in
each room. The device grouping system randomly samples CSI
data from a huge amount of data to create a feature vector
for grouping. To accurately group IoT devices, we need to
extract the separate influences on CSI from people in different
locations. In a practical environment, we may spend a long
time in a living room, while we may spend a short time
in a bathroom. Random CSI-data sampling tends to extract
CSI changes in the common situation of people’s location
distribution.

In this paper, we extend our previous work to group IoT
devices in a practical environment. To efficiently extract the
influences on CSI from people in different locations, we
sample CSI data in many situations in terms of people’s
distribution, i.e., how people stay in rooms. The influence of
different people on CSI can be considered to be independent.
We apply independent component analysis (ICA) to feature
vectors extracted from CSI to separate the CSI changes caused
by different people. We then perform clustering on the ICA
components to group the feature vectors based on the people’s
distribution. Finally, feature vectors are randomly sampled
from each cluster to group IoT devices.

By conducting experiments in a one-bedroom actual house
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where four people are living, we show the improvement in
grouping performance by our proposed CSI sampling method.
Our main contributions are threefold:

• We experimentally show the poor performance of the
room-by-room IoT device grouping presented in our
previous work [13] in a practical environment.

• We present the design of a CSI-data sampling method
for the IoT device grouping in a practical environment.
Our design is based on an observation that CSI changes
caused by different people are independent. We apply
ICA to separate CSI changes caused by different people.

• We conducted experiments to evaluate our CSI-data sam-
pling method in a real environment. The experimental
evaluations show that our CSI-data sampling improved
the IoT device grouping performance with an adjusted
Rand Index (ARI) by up to 44.9%.

The remainder of this paper is organized as follows. Sec-
tion II summarizes related work. Section III briefly shows the
room-by-room IoT device grouping system presented in [13],
followed by the design of CSI-data sampling method proposed
in this paper in Sect. IV. In Sect. V, we evaluate the device
grouping performance. Finally, Sect. VI concludes the paper.

II. RELATED WORK

This study relates to IoT system configuration, including
network configuration, device coordination, and device local-
ization. We perform room-by-room device grouping, which
relates to proximity-based device grouping. Note that device-
free human sensing is out of scope in this paper as our focus
is on device grouping.

IoT systems capable of automatic or semi-automatic con-
figuration have been proposed as zeroconf, self-configuration,
and automatic provisioning [1]–[3]. These studies focus on
networking and device configuration for sensing, where loca-
tion information setup is out of scope.

Automatic network configuration is a well-studied field and
is widely used. In our daily lives, we are using bootstrap
and dynamic host configuration protocols (BOOTP, DHCP).
IEEE 802.11 provides a secure network configuration named
WiFi protected setup (WPS). In the field of IoT, automatic
peer-to-peer and ad-hoc network configuration using WiFi
Direct has been presented [4]–[8]. We can use these methods
to semi-automatically configure a network for an IoT system.

For IoT device coordination, mixed reality (MR) based
device coordination systems have been presented [9], [10].
In [11], the authors proposed the device coordination method
based on device usage and user context information. An
event-based device coordination approach has also been pro-
posed [12]. These approaches can be used to realize a PnP
IoT system.

To complete the device location information setup, indoor
localization methods are useful. Fingerprinting is popularly
studied in the field of indoor localization [14]. Especially, re-
cent papers have focused on WLAN CSI-based fingerprinting
due to its high performance [15]–[18], after the pioneering
work PinLoc [19]. Model-based localization methods such as
FUSIC [20] and SpotFi [21], which use CSI, have also been
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Fig. 1. Overview of CSI-based room-by-room IoT device grouping

reported to improve localization accuracy and robustness to
environment changes. We can estimate the location of IoT
devices using these methods. However, we can obtain no
device-context information such as the room and its name
where a device is installed in addition to the actual location
of the device. Device grouping presented in this paper can be
combined with the room-context estimator [22], resulting in
an automatic IoT device location information setup.

Proximity-based device grouping and paring is another
related topic mainly studied in the field of network security.
These studies include device grouping relying on ambient
sound [23]–[26], magnetism [27], controlled lighting [28], and
multi-sensor readings [29], [30]. These approaches require a
special infrastructure or IoT devices with specific sensors.

Radio-based device grouping methods can be applied for
IoT device grouping because IoT devices are equipped with a
wireless communication module. Amigo [31] is a proximity-
based authentication method based on the received signal
strength of WLAN. PSP [32] is a secure device-paring method
based on WLAN CSI. Although devices in a range of several
tens of millimeters can be grouped in the same group with
these methods, the grouping distance is too short for device
grouping in the IoT system setup. When two devices are
installed at a distance more than the radio wavelength, wireless
channels between a WLAN access point (AP) and the two
devices are different, which makes it difficult to estimate
proximity using these methods in our scenario.

III. CSI-BASED ROOM-BY-ROOM IOT DEVICE GROUPING

Figure 1 shows an overview of the CSI-based room-by-
room IoT device grouping system. The device grouping system
consists of a data retriever and device grouping block.

The data retriever collects CSI data sent from IoT devices
when the devices communicate with a WLAN AP. We use
the CSI collector presented in [33] to collect IEEE 802.11ac
compressed CSI data from multiple devices. The compressed
CSI data is described as two CSI angles ωij(0 → ωij < 2ε)
and ϑlj(0 → ϑlj < ε/2), which correspond to phase and am-
plitude difference between antennas, respectively. The range
of index numbers i, j, l is defined by the number of antennas
on the transmitter and receiver. We use ϑlj in this paper based
on the results in [13].

The device grouping block extracts features from the CSI
angle ϑlj and groups IoT devices by the room where the
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Fig. 2. Feature extraction procedure

devices are installed using a clustering algorithm. Figure 2
shows a feature extraction procedure for a single IoT device.
1) The time series data of the CSI angle for each subcarrier is
first divided into fixed-length windows. 2) The device grouping
block then calculates features for each window, deriving a CSI
feature matrix. The rows and columns of a CSI feature matrix
correspond to the windows and features, respectively. We use
standard deviation (std), peak-to-peak (p2p), and interquartile
range (iqr) features based on the results in [13]. 3) Finally,
we pick Nwin windows from the CSI feature matrix and align
each row in a 1-dimensional vector to derive a feature vector.
IoT devices are grouped by a clustering algorithm with the
feature vector calculated for each IoT device.

In [13], we presented that the selection of Nwin windows
had a big impact on the grouping performance. We confirmed
that the grouping performance was highly degraded when we
used the CSI data collected when people stayed in a specific
room. In a practical environment, people spend uneven time
in each room, which leads to low grouping performance. To
achieve a high grouping performance, CSI sampling, i.e., the
selection of the rows of a CSI feature matrix, is important.

After the device grouping, the location information is col-
lected to complete the device location setup. We assume that
we collect the location information from users. For example,
we can ask a user for the name of the room when one of the
device in a group is used. We may also rely on existing relative
localization methods to modify incorrect device grouping.
Based on the relative location, we can find incorrect device
grouping to modify device groups, which is out of scope in
this paper and is our future work.

IV. CSI SAMPLING FOR PRACTICAL ENVIRONMENTS

A. Key Idea
The key idea of CSI sampling for grouping IoT devices

in practical environments is to select rows of the CSI feature
matrix such that feature vectors include the CSI changes col-
lected in various situations. The CSI features can be associated

...

ICA

Time

Device 
1

Device 
2 ...

Device 
n

ICAi

ICAj

Device 1
Device 2

Device n

...

...

...

...

2) Perform clustering in ICA 
space

1) Perform 
ICA over 
CSI feature 
matrices

3) Select Nsamp 
windows in each 
cluster and align 
CSI features 
corresponding to 
the selected 
windows
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TABLE I
NOTATIONS

Notation Description
ωij ,εlj CSI angle in compressed CSI
Nwin Number of windows used in IoT device grouping
Nica Number of ICA components in ICA clustering
Nclus Number of ICA clusters
Nsamp Number of windows selected in each ICA cluster

with CSI changes caused by physical changes such as human
movements. Assuming that people in different locations have
separate influences on CSI, we observe the mixed CSI changes
caused by the people in different locations. We perform the
independent component analysis (ICA) to separate the CSI
changes caused by the people in different locations.

B. Overview

Figure 3 shows an overview of CSI sampling using ICA.
The proposed CSI sampling consists of 1) ICA, 2) ICA
clustering, and 3) feature vector extraction steps. In step 1), we
perform ICA on the CSI feature matrix, followed by clustering
on the independent components in step 2) to obtain clusters
of windows with similar independent components. In step 3),
windows of a fixed number Nsamp from each cluster are
selected. The rows of the CSI feature matrix corresponding
to the selected windows are randomly sampled to derive a
feature vector. We perform the device grouping as presented
in Sect. III using the feature vector.

The following subsections describe each step in detail.
Notations in this paper are summarized in Table I for reference.

C. ICA Step

The ICA step performs ICA on CSI feature matrices to
obtain time-series data of independent components. The row
of a CSI feature matrix corresponds to a window of CSI data,
i.e., CSI data at a specific time. We derive time-series CSI
features of all IoT devices by joining the CSI feature matrices
of all the IoT devices, as shown in Fig. 3.

In general, the dimension of the CSI features, i.e., the
number of columns of a CSI feature matrix, exceeds 150.
As described in Sect. III, we calculate three CSI features of



standard deviation (std), peak-to-peak (p2p), and interquartile
range (iqr), for each CSI angle ϑlj for each subcarrier. There
are at lease one CSI angle ϑlj for more than 52 subcarriers.
The dimension of the CSI features is more than 3↑52↑|ϑlj | =
156|ϑlj |, where |ϑlj | is the number of CSI angles ϑlj for each
subcarrier.

To reduce computation for ICA on the large dimensional
data, we perform principal component analysis (PCA) before
ICA. CSI feature matrices of all IoT devices are joined hori-
zontally. We perform PCA on the joined CSI feature matrix,
extracting principal components. Then ICA is performed on
the extracted principal components.

The number Nica of independent components is set to the
same as the number of extracted principal components, which
is a general approach of ICA on high dimensional data. In
this paper, we assume that the CSI change caused by each
human appears as an independent component. Independent
components might also include the CSI changes caused by the
changes in wireless equipment, environment, and IoT devices.
We determine the number Nica of independent components
so that the sum of the contribution ratios of the principal
components exceeds a specific value such as 0.8.

D. ICA Clustering Step
The ICA clustering step applies a clustering algorithm to the

independent components obtained in the ICA step to group
the rows of the CSI feature matrix, which corresponds to
windows in Fig. 2. We assume that independent components
can be associated with the CSI changes caused by individual
humans. Windows with similar independent components can
be considered to be obtained in a similar distribution of
people’s location.

We don’t limit a clustering algorithm in this paper. Cluster-
ing algorithms that require no number of clusters or estimate
the number of clusters is desirable because the number of the
similar situations is unknown.

E. Feature Vector Extraction Step
The feature vector extraction step selects rows of joined

CSI matrix based on the ICA clusters and makes a feature
vector for each IoT device. For each ICA cluster, we randomly
select Nsamp samples. We then extract the rows of the joined
CSI feature matrix corresponding to the selected ICA samples,
obtaining a joined independent CSI feature matrix. We split
the joined independent CSI feature matrix for each IoT device
and construct a feature vector for each IoT device by aligning
the rows of the independent CSI feature matrix.

The selection of rows in this step corresponds to the window
selection of Nwin windows in Fig. 2. The number Nwin of
selected windows can be calculated as Nwin = NclusNsamp,
where Nclus is the number of clusters in the ICA clustering
step.

V. EVALUATION

To verify the effectiveness of the CSI sampling method
described in Sect. IV, we conducted an initial evaluation using
CSI data collected in an actual one-bedroom condominium.
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TABLE II
NUMBER OF COLLECTED CSI DATA PACKETS

Device ID (a) # of packets (b) # of valid windows
1 290663 2358
2 2968 0
3 198929 2357
4 268754 2880
5 308506 2880
6 347484 2880
7 369627 2880
8 247124 2880

A. Experiment Setup

Figure 4 shows the experiment setup for CSI data collection.
We installed a WLAN AP, an Intel Compute Stick computer
as a CSI data collector, and eight Raspberry Pi 3A+ as IoT
devices in the experiment environment. These devices were
installed on a floor or on a shelf with a height of approximately
2 meters. The experiment environment was located on the first
floor of a lightweight steel-frame condominium building. The
interior walls in the environment were mainly made of wood.
There were rooms occupied by other residents in the left and
right directions in Fig. 4, which are not shown in Fig. 4.

Raspberry Pies run a shellscript to continuously communi-
cate with a Web server via the WLAN AP so that compressed
CSI data would be periodically sent from the AP. We installed
OpenWRT, which is a lightweight OS for access point, on the
Compute Stick computer and collected the compressed CSI
data using a tcpdump command. Note that no modification
was made on Raspberry Pi or Compute Stick hardware, the
Raspberry Pi OS, or OpenWRT. This CSI collection system
was made of softwares running on off-the-shelf devices.

We collected CSI data for 24 hours in such an environment
where a family of four, i.e., one in his 40s, one in her 30s,
and two under 10 years old, were living. No instruction or
restriction were given to the family members because the
purpose of this experiment is to collect CSI data in an actual
environment.

The CSI data was sent from IoT device, i.e., Raspberry Pi, at
a non-uniform rate. Due to packet reception errors on the CSI
collector, we observed uneven amount of CSI data for each
IoT device. Table II(a) shows the number of CSI data packets



collected for each IoT device. The device IDs correspond to
the numbers of the IoT devices in Fig. 4.

The window size used in step 1) in Fig. 2 was set to 60
seconds. This value was determined based on the difference
of CSI data collection rate between this experiment and the
experiment in [13]. In [13], we show that the device grouping
accuracy almost saturated with the window size greater than 1
second. The CSI data collection rate was 10 Hz in [13], while
in this experiment the average collection rate was 1 to 2 Hz
as calculated from Table II. We calculated the packet loss rate
for each window and for each IoT device. Windows with a
packet loss rate exceeding 20% were discarded.

Table II(b) shows the number of valid windows for each
IoT device, which equals to the number of rows in the CSI
feature matrix. Our proposed CSI sampling method requires
CSI features of all the IoT devices. We excluded device 2 that
had no valid window and grouped the remaining seven devices
to calculate the grouping accuracy.

To demonstrate the effectiveness of the proposed CSI sam-
pling, we compared the performance of the following three
CSI sampling methods.

1) ICA sampling (proposed method)
The ICA sampling is the proposed method described in
Sect. IV. Windows are selected based on the results of
ICA.

2) PCA sampling
The PCA sampling selects windows based on the results
of PCA instead of ICA. A clustering algorithm and the
number Nclus of clusters are set to the same values as
the ICA sampling method.

3) Random sampling
The random sampling, which is a baseline method,
randomly selects Nwin of windows. For fairness, Nwin is
calculated in each trial from the number Nclus of clusters
and the number Nsamp of samples extracted from each
cluster used in the ICA sampling.

The device grouping performance is evaluated using an
adjusted Rand index (ARI), which is widely used in the
evaluation of clustering. The ARI takes the value in the range
between ↓1 and 1. The higher value indicates the higher
clustering accuracy. The purpose of this study is to group IoT
devices without room labels and not to classify IoT devices
into each room. We cannot obtain a confusion matrix that is
popularly used in a classification performance evaluation.

B. The number Nica of independent components

The number Nica of independent components was first
determined as the number of components such that the sum of
the contributions of principal components exceeds 0.8 in PCA,
as described in Sect. IV-C. Figure 5 shows the cumulative
contributions of principal components as a function of the
number of principal components. We can confirm that the
cumulative contributions exceeds 0.8 when the number of
principal components is greater than 12. In this paper, we set
Nica = 12 in the following evaluations.
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C. ICA Clustering

Figure 6 shows the result of clustering in ICA space. To
visualize the clustering result, we reduced the dimensions:
12-dimensional ICA space was reduced into two-dimensional
space using t-SNE. We used the k-means algorithm for clus-
tering in this paper, although we don’t limit the clustering
algorithm. The number Nclus of clusters was set to 6.

D. Device Grouping Performance

The performance of the proposed CSI sampling method was
evaluated using the mean ARI of the IoT device grouping re-
sults. We calculated feature vectors as described in Sect. IV-E
and grouped IoT devices using the calculated feature vectors.
We repeated the grouping 500 times to calculate the mean
ARI.
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Figure 7 shows the mean ARI as a function of the num-
ber Nsamp of selected ICA samples. Figure 7 indicates the
following:

1) The proposed ICA sampling showed the highest mean
ARI. We can confirm that the ICA sampling was ef-
fective in improving the grouping performance in a
practical environment. The mean ARI was 0.9435 and
0.6513 at Nsamp = 1 for the ICA and random sam-
pling, respectively. The mean ARI was improved by
0.9435/0.6513 ↓ 1.0000 = 0.4486, i.e., 44.9%.

2) Compared to random sampling, both the ICA and PCA
sampling significantly increased the mean ARI. Clus-
tering in independent- and principal-component spaces
allows us to group windows with similar CSI changes.
We could efficiently extract CSI changes in different
distributions of people’s location by selecting windows
in each group, resulting in the high IoT device grouping
performance.

3) As Nsamp increased, the improvement by ICA and PCA
sampling became smaller. The ICA and PCA sampling
were effective when the amount of CSI data used in the
device grouping was limited.

The above results confirm that the proposed ICA sampling
significantly improved IoT device grouping performance in a
practical environment.

VI. CONCLUSION

In this paper, we presented a CSI sampling method for
room-by-room IoT device grouping proposed in our previous
paper to improve the grouping performance in a practical
environment. To address the performance degradation caused
by the nonuniform time distributions of where people stay in
each room, we perform ICA on CSI features to efficiently
extract influences on CSI features caused by different distri-
butions of people. The experimental evaluation revealed that
the proposed ICA sampling successfully improved IoT device
grouping performance with an ARI of up to 44.9%.
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