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概要：インターネットサービスでは，Botによる自動操作を防止するため，人間とBotを識別するCAPTCHA

認証が用いられている．画像認識技術の進歩により Botが高精度に CAPTCHA認証を突破するようにな
り，Botに突破されない新しい CAPTCHA認証技術の研究開発・利用が進んでいる．本研究では誤記を
活用した発話型属性認証システムを提案し，その実現に向けて必要となる，提示文章ごとの発話特徴の分
析を示す．誤記を含めた文章を提示すると Botの発話速度は一定であるのに対し，人間は詰まりや言い淀
みにより発話速度が一定ではないと考えられる．このような人間的発話特徴が発生する文章を特定するた
め，本稿では複数種類の誤記のそれぞれを含む文章を提示し，人間と Botの発話データを収集して分析を
行った．その結果，認証文の中央で，文節の 5文字目に「結合」の誤記を加えることで 74%識別できるこ
とを確認した．

1 はじめに
インターネットの利用が拡大する中で，悪意のある Bot

によるWebサイトへの攻撃が発生している．例えば，悪
意のある自動化された Botが大量のアカウントを作成する
アカウントの不正作成が挙げられる．作成したアカウント
は，詐欺やスパムの発信元として利用される．悪意のある
Botは経済的損失を引き起こすため，Botによる攻撃を防
ぐための対策が重要になっている．
Botによる攻撃を防ぐために，操作を行っている対象が
人間か Botかを識別する属性認証が用いられる．属性認証
の概念は，人工知能研究におけるチューリングテストに関
連している．チューリングテストは，1950年にイギリスの
数学者アラン・チューリングによって提唱されたテスト [1]

である．機械が人間と区別がつかないほどの知的な振る舞
いをするかどうかを評価する．
一般に，人間と Bot を識別する属性認証では

CAPTCHA (Completely Automated Public Turing test

to tell Computers and Humans Apart)認証が用いられる．
CAPTCHA認証は，人間には理解できるが機械では解析
しにくい情報を問題として提示し，問題に正解することで
対象者が人間であることを証明する手法である．多くの
Webサイトでは画像認識型の CAPTCHA認証が用いられ
ている．
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画像認識技術の進歩に伴って Botが CAPTCHA認証を
突破するようになり [2]，Botに突破されない新しい属性認
証技術の研究開発が進んでいる．例えば，機械には判別困
難な文字列を用いた語彙性判断型 CAPTCHA認証 [3]や
タイポグリセミアを用いたMulti-model CAPTCHA [4]が
提案されている．
しかしながら，機械学習技術の著しい発展に伴い，単に人

間と機械の判断能力の差異に基づくのではなく，より本質
的な人間の行動特性に着目した，新たな視点による属性認
証の枠組みが求められる．深層学習モデルは，人間の認知
や判断を模倣する能力を急速に高めており，従来は人間に
しかできないとされていた視覚的・言語的タスクにおいて
も，高精度な処理が可能となっている．従来のCAPTCHA

認証のような人間判別技術が機械によって容易に突破され
るだけでなく，機械が人間らしい振る舞いや応答を実現す
ることも可能となっている．
本研究では，新たな属性認証技術として発話型属性認証

システムを提案する．認証時に読み上げる認証文章に誤記
を含ませ，発話リズムの変化により属性認証を行う．誤記
を含む認証文章を提示することで，人間が読み上げた場合
には詰まりや言い淀みなどが確認されると考えられる．本
稿では，認証文章として望ましい誤記の位置や種類を特定
するために, 文字認識特徴と発話特徴を分析した．発話型
属性認証システムに人間と Botの発話音声を入力して評価
した結果，最大 74%で識別できることを確認した．
本稿の構成は以下の通りである．第 2節では音声を用い

― 239 ―

「マルチメディア，分散，協調とモバイル
(DICOMO2025)シンポジウム」 令和7年6月

© 2025 Information Processing Society of Japan



た CAPTCHA認証と合成音声の検知に関する関連研究を
示す．第 3節では提案する発話型属性認証システムの設計
を示し，第 4節においては認証文章の特徴を特定して，提
案システムの属性認証性能を評価する．最後に第 5節でま
とめとする．

2 関連研究
2.1 音声ベースの CAPTCHA認証
2.1.1 発話型 CAPTCHA

Shahらは，発話による CPATCHA認証を提案した [5]．
認証者は画面に提示される認証文を読み上げて認証を行
う．システムは，自然な人間の発話か，認証文を正しく発
音しているかを評価する．自然な人間の発話はGMMs，認
証文の確認は Pocketsphinx と正規化 Levenshtein 距離を
用いる．2つの評価基準を共に突破した場合に，人間と識
別される．識別精度は 73.7%であった．

2.1.2 Deepfake CAPTCHA

Liorらは，本物そっくりな声の「ディープフェイク」と
呼ばれる Bot を見分けるために D-CAPTCHA を提案し
た [6]．電話相手に対してちょっと変わった要求をして，答
え方を評価する．例えば，歌ってみてや咳払いをしてなど
を要求する．評価項目は 4つあり，本物の声と同じか，要
求を指示通りできたか，声に変なところはないか，要求を
すぐにできたかである．全ての項目を突破すると人間と識
別される．識別精度は 91%以上であることが確認された．

2.2 合成音声検知手法
2.2.1 ポップノイズ検知手法
合成音声を検知する手法として，望月らは人間が発声す

る際に生じるポップノイズの特性を利用した検出方法を提
案した [10]．ポップノイズ区間に含まれる音素情報を用い
ることで，声の生体検知の頑健性が向上することが分かっ
ている．そのため，生体検知を行いやすい認証文をシステ
ム設計に反映した．従来手法と比較して，誤受理率を約
60%低下させることができた．

2.2.2 機械学習手法
Botによる音声型 CAPTCHAの突破を阻止する方法と

して，機械学習で合成音声を検出するアプローチが考えられ
る．Liらは自己教師あり事前学習モデル HuBERTに基づ
く合成音声検出手法 HuRawNet modifiedを提案した [7]．
自己教師あり学習は，未学習の特徴を抽出することが可能
なことが確認されている．音声処理のための事前学習モデ
ル HuBERTに，音声認識や音声合成などの目的タスクに
合わせた追加学習をすることにより高い性能を達成するこ
とが報告されている [8]．本手法により，学習データに含
まれない音声も検出できることが示されている．しかしな
がら，Kassisらは複数の合成音声検出手法に対して検出さ

Bot

人間

認識： 発話： 

図 1 人間と Bot の認識から発話までの違い

れない合成音声生成技術を確立することで，既存の認証シ
ステムが突破できることを示した [9]．認証文を読み上げ
る音声ベースの属性認証では，Botに突破されるため，別
のアプローチを取り入れる必要がある．

3 発話型属性認証システム
3.1 キーアイデア
本システムのキーアイデアは，人間と Botが誤記を含む
文章を読み上げるときの文字認識特徴と発話特徴に基づい
て属性認証することである．図 1に示すように人間は文章
を読み上げる際に，文章を分解して認識と発話を逐次的に
処理していくが，Botは与えられた文章全体を認識して，
一括で音声に変換する．提示される文章に誤記が含まれる
場合，人間は文章を認識するまでに時間がかかり，詰まり
や言い淀みが発生しやすく，発話リズムが一定ではなくな
ると考えられる．これに対し，Botは文章内の誤記の有無
で認識速度に多少の変化は生じるものの発話後への影響は
なく，発話リズムは一定であると考えられる．
具体的には，文字認識特徴では，人間と Botが文字列を

認識してから理解するまでの文字認識コストに着目する．
人間は誤記の有無によって文字認識コストが異なる．例え
ば，下記の文章を比べた場合，後者の方が認識コストが高
いことが考えられる．
さくらが いろどり はるのおとずれを つげる
さらくが いどろり はるのおとれずを つげる

前者は一般的に使われる単語のみで構成されているため，
人間にとって認識コストは低いと考えられる．後者は誤記
を含んでおり，修正に時間がかかるため認識コストが高く
なる．
発話特徴では，人間と Botの誤記周辺における発話方法
に着目する．人間は馴染みでない文章を即座に読み上げる
際に，発話が流暢ではなくなると考えられる．例えば，「や
しささと おもやりの こごろは せかいを あかるく てら す
ともふしびです」という文章を制限時間を設けて読み上げ
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図 2 発話型属性認証システムの概要

た場合，流暢ではなくなると考えられる．Botが読み上げ
た場合，機械的に流暢な発話をするため，流暢性は一定で
あると考えられる．

3.2 システム概要
図 2に提案する発話型属性認証システムの概要を示す．

提案システムは文章作成ブロック，提示文章確認ブロック，
流暢性評価ブロックの 3つのブロックで構成される．文章
作成ブロックでは，あらかじめ認証文章を作成し，認証対
象者に提示する．認証対象者が提示された文章を読み上げ
ると提示文章確認ブロックはその音声をマイクを用いて取
得し，文字起こしした上で提示文章と比較してその差分を
算出する．流暢性評価ブロックでは，入力された音声の詰
まり位置と音素時間に基づいて人間であるか Botであるか
を識別する．
以降では各ブロックについて詳述する．

3.3 文章作成ブロック
文章作成ブロックでは，発話によって人間か Botかを識

別可能な認証文章を作成して認証対象者に提示する．認証
文章の元となる原文を用意して，適切な誤記を加える操作
を行い，人間は流暢に発話できないが，Botは流暢に発話
できる文章を作成する．具体的な作成方法は，第 4節で実
験的に検討する．

3.4 提示文章確認ブロック
提示文章確認ブロックでは，はじめに人間または Botに
よる読み上げ音声をマイクを用いて取得し，音声ファイル
に変換する．さらに，ソフトウェアを用いて文字起こしを
行い，読み上げた文章と提示文章の類似度を計算して比較
する．
類似度は，文字起こしした文章の長さ Ld と元の文章の
長さ Lo を用いて以下のように定義する．

類似度 = 1− DL

max(Ld, Lo)
(1)

ここで，DLは Levenshtein距離であり，2つの文字列がど
の程度異なっているかを示している [11]．Levenshtein距
離が小さいものほど似た文字列であることを示している．
Levenshtein距離は，文字の挿入や削除，置換えによって

1つの文字列を別の文字列に変形するのに必要な手順の最
小回数として与えられる．Levenshtein距離の求め方の例
として，「みいえだいかく」という文字列から「みらいだい
がく」という文字列に変換する方法を挙げる．以下に示す
ように最低でも 3回の手順が必要になるため，Levenshtein
距離は 3となる．
( 0 ) みいえだいかく
( 1 ) みいだいかく (「え」を削除)

( 2 ) みらいだいかく (「ら」を追加)

( 3 ) みらいだいがく (「か」を「が」に置換え)

式 (1)で定義される類似度が閾値を上回った場合は認証
を継続する．本稿では，提示された文章を適切に読んでい
るかを判定するため，文章全体の 50%以上が一致していれ
ば適切に読んでいると判断し，閾値を 0.5とした．閾値を
下回った場合は，認証を棄却し，文章作成ブロックにおけ
る文章作成から再度やり直す．

3.5 流暢性評価ブロック

流暢性評価ブロックでは，入力された音声が誤記を含む
文節で非流暢な発話となっているかを，詰まり位置と音素
時間の 2つで評価する．誤記を加えた位置は，文章作成ブ
ロックから受け取る．
詰まり位置の評価では，入力された音声の中で詰まりの

ある位置が誤記を含む箇所であるかを評価する．詰まりを
無音区間と定義して検出する．スペクトルサブトラクショ
ン法により入力された音声から雑音を除去して，短時間エ
ネルギーを計算する．そして，平均短時間エネルギーがあ
らかじめ設定された閾値を下回った区間を無音区間とす
る．無音区間の終了時刻から 2 秒間の音声を文字起こし
し，誤記を含む文節の文字列が確認された場合に誤記によ
る詰まりと判定する．本稿では無音区間判定の閾値は 10%

とした．
音素時間の評価では，入力された音声の誤記を含む文節

の音素時間が平均音素時間より長いかによって流暢性を評
価する．音素とは音声学における最小単位である具体的単
音である [18]．音素時間は音素解析を行い，各音素の時間
を計測する．そして，音声全体及び誤記を含む文節に含ま
れる音素のそれぞれについて平均値を計算し，誤記を含む
文節の平均音素時間の方が長い場合は誤記による非流暢で
あると判定する．
最後に，詰まりがある，あるいは誤記による非流暢であ

る場合は人間と識別し，それ以外の場合はBotと識別する．

― 241 ―
© 2025 Information Processing Society of Japan



図 3 録音環境

4 実験的模索
提案システムを実現するためには，人間と Botとで発話

特徴が異なる認証文章を作成することが重要である．認証
文章は，Botが簡単に認識して流暢に発話できる一方で，
人間には認識しづらく，流暢に発話することが難しい文
章にする必要がある．しかし，誤記を加える位置や種類に
よって，どのような認識や発話の違いが発生するのかに関
する論文はない．
そのため，複数の誤記タイプを用意して実験的に模索し

た．具体的には，文章中の誤記の位置や種類によって人間
と Botのそれぞれでどんな発話特徴が現れるのかを実験的
に評価する．さらに，模索した結果から分かった提示する
に望ましい文章を用いて，再度人間と Botの音声データを
収集する．提案システムで示した流暢性評価を用いて識別
可能であるかを評価する．

4.1 実験準備
4.1.1 音声データの収集
図 3 に，人間の音声データの収集環境を示す．人間

の音声データは，Apple MacBook Air (2020) に FIFINE

AmpliGame-A6VWマイクを接続し，データ収集用に実装
したWebアプリケーションを用いて収集した．Webアプ
リケーションは，録音ボタンが押されたら読み上げ文章を
表示するとともに，10秒間の録音を行うように実装した．
録音の残り時間が被験者に見えるように，録音の残り時間
をカウントダウン表示した．被験者には録音ボタンを押し
た後に表示される読み上げ文章を 10秒以内に読むように
指示を与えて音声データを収集した．
Botの音声データは，文章のテキストデータから自動音
声として得た．LLM (Large Language Model)に誤記を含
む文章を与えて誤記を修正させた上で，自動音声を用いて
音声データに変換した．

4.1.2 認証文章のデータセット
実験的に文字認識特徴と発話特徴を見つけ出すために，

誤記の位置や種類が異なる文章を作成した．文章の中でど
こにどんな誤記があるのかを明確にすることが重要である
ことから，文章を分かち書きにして，文節数をもとに文章
を 3等分し，3分割した文章のそれぞれに 5種類の誤記を
それぞれ加えた文章を作成した．そのため，1つの文章か
ら誤記を含む文章 15個を作成した．
誤記を含む文章の具体的な作成工程は以下の 5つである．

( 1 ) 17文字程度の文章を生成
( 2 ) 文章を分かち書きに変換
( 3 ) 文章を全てひらがなに変換
( 4 ) 文節数を基に 3等分し，文章を前方，中央，後方に分割
( 5 ) 指定した位置の，文字数が多い文節に誤記を加える
工程 (1)では，誤記を含む文章のもととなる文章を用意
した．「17文字程度」は，文章を 3等分にした際に，それ
ぞれに文節が 2つ含まれることを想定している．17文字
は，俳句の文字数と同じであり，3つに分割するアイデア
のもととなっている．
工程 (2)では，工程 (1)で用意した文章を分かち書きに変

換した．分かち書きには，オープンソフトウェアのMeCab

*1 (辞書：mecab-ipadic-NEologd) を用いた．MeCab は，
日本語のテキストを単語や文節などの形態素に分割し，そ
れらに品詞や活用形などの情報を付加するための形態素解
析エンジンである．文節の切れ目は，品詞が名詞，動詞，
副詞，感動詞，形容詞，形容動詞，連体詞，接頭詞のとき，
その単語の始まりを文節の切れ目と定義した．文節の切れ
目には全角スペースを挿入し，1つの文章にした．
工程 (3)では，分かち書きした文章をすべてひらがなに
変換した．漢字をひらがなに変換するためにMeCabを用
いた．
工程 (4)では，文章の文節数を基準に 3等分し，それぞ

れを前方，中央，後方の 3つの部分に分割した．この分割
は，分析目的の「どこにどんな誤記があるか」の「どこ」
に該当する．
工程 (5)では，指定した位置（前方，中央，後方）の中

で文字数が最も多い文節を選び，最初と最後の文字以外に
誤記を 1つ加えた．誤記の種類は，表 1に示す 5種類であ
ることがわかっている [12]．しかし，英語における誤記で
あるため，日本語に適用する必要がある．表 2に日本語に
適用した誤記を示す．
誤記を含む文章のデータセット作成において，17文字程

度のランダムな文章は LLMを用いて生成した．使用した
LLMは，Google DeepMindが開発したGemini 1.0 Pro(以
下 Gemini)である．データセット作成に向けて，Gemini

を使用して 100個の文章を生成した．1つの原文に対して

*1 MeCab: https://taku910.github.io/mecab/
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表 1 誤記の種類 [12]

Class Target Word:AIRPLANE

Transposition AIRLPANE

Erasure AIR LANE

Substitution AIRKLANE

Deletion AIRPLNE

Insertion AIRFPLANE

表 2 誤記の種類の日本語適用
誤記の種類 日本語例:はなびらが
入替 はならびが
削除 は びらが
代用 はなひらが
結合 はびらが
挿入 はなびらはが

誤記の位置と種類が異なる 15 タイプの文章を作成した．
15タイプとは，誤記の種類が 5つ (入替，削除，代用，結
合，挿入)×誤記の位置が 3つ (前方，中央，後方)である
ことを示している．そのため，100× 15=1500個の文章を
作成した．

4.2 実験対象
人間の被験者は，20代の大学生 15人である．各被験者

には，100個の文章のそれぞれに対して 15種類の誤記タイ
プが均等に含まれるように構成された文章群を提示した．
100個の文章から生成された 15タイプの誤記パターンを
15通りの順序で並び替え，それぞれを 1人の被験者に割り
当てた．各被験者に異なる順序で誤記タイプが分散するよ
う設計されている．被験者 15人に，それぞれ 100個の文
章を読み上げてもらい，1500個の音声データを収集した．
Botは，LLMを用いて文章を理解することを想定し，音

声データを収集した．Botが認証を突破することを想定し
た場合，誤記を含んだ文章を修正して読み上げることが想
定される．そのため，プロンプトには誤記を含む文章の前
に，「以下の文章を修正してください。」を加えて入力し
た．使用した LLMは，Gemini 1.0 Pro，GPT-4，GPT-4

omni(以下 GPT-4o)の 3種類である．LLMから受け取っ
た文章は，VOICEVOX *2 を用いて音声データに変換し
た．VOICEVOXは，日本語音声合成エンジンおよびソフ
トウェアで，テキストを高品質な音声に変換するための
ツールである．キャラクター番号は，2を使用した．

4.3 文字認識特徴分析
人間と Bot の文字認識特徴を比較するために，誤記の

修正率を評価した．誤記の修正率は，音声データを文字起
こしした上で，誤記を含まない元の文章と比較すること
で評価した．人間と Botから収集した発話音声データを
*2 VOICEVOX: https://github.com/VOICEVOX/voicevox

表 3 各対象ごとの修正率 [%]

誤記タイプ 人間 Gemini GPT-4 GPT-4o

種類 位置
入替 前方 27 40 30 27

中央 36 39 35 26

後方 43 29 37 26

削除 前方 18 31 24 21

中央 17 31 30 23

後方 24 43 38 33

代用 前方 53 53 50 39

中央 51 48 41 44

後方 48 49 41 45

結合 前方 18 38 29 25

中央 15 38 35 26

後方 25 42 37 32

挿入 前方 17 37 34 27

中央 39 44 36 30

後方 37 40 41 37

Whisper large-v2 を用いて文字起こしし，MeCab(辞書：
mecab-ipadic-NEologd)を用いてひらがなに変換した．誤
記を加える前の原文も同様にひらがなに変換し，発話音声
データから得られたひらがなの文章と完全一致するかを確
認した．
集計した結果を表 3に示す．表の赤色・青色セルは各対

象の修正率の最大値・最小値をそれぞれ示している．人間
は 15人の合計である．
人間は，前方に代用の誤記を加えた場合，修正率が最大

で 53であった．反対に，中央に結合の誤記を加えた場合，
修正率が最小で 15であった．Geminiと GPT-4は前方に
代用の誤記を加えた場合，修正率が最大で 53と 50であっ
た．GPT-4oは，後方に代用の誤記を加えた場合，修正率
が最大で 45であった．反対に前方に削除の誤記を加えた
場合，3つの LLMで修正率が最小となり，31, 24, 21 で
あった．
人間と Botの修正率の差を確認するため，各 LLMの修

正率から人間の修正率を引いて，絶対値を計算した．人間
と Botの修正率差の絶対値を表 4に示す．表の赤色・青色
セルはそれぞれ，比の最大値・最小値を示している．LLM

Meanはの人間とBotの修正率差の絶対値の平均値である．
文章の中央に結合の誤記を加えた文章において，人間と

Botの修正率の差が平均で大きい傾向が認められる．全て
の LLMにおいて，人間よりも修正できることがわかる．
反対に，人間と Botの修正率差の絶対値では，各 LLMの
一番低い誤記タイプはバラバラである．これは各 LLMの
特徴が要因であると考えられる．この結果から，発話型属
性認証に向けては，中央に結合の誤記を加えた文章を提示
することが望ましいと言える．
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表 4 人間と Bot の修正率差の絶対値
誤記タイプ Gemini GPT-4 GPT-4o LLM

種類 位置 Mean

入替 前方 13 3 0 5.33

中央 3 1 10 4.67

後方 14 6 17 12.33

削除 前方 13 6 3 7.33

中央 14 13 6 11.00

後方 19 14 9 14.00

代用 前方 0 3 14 5.67

中央 3 10 7 6.67

後方 1 7 3 3.67

結合 前方 20 11 7 12.67

中央 23 20 11 18.00

後方 17 12 7 12.00

挿入 前方 20 17 10 15.67

中央 5 3 9 5.67

後方 3 4 0 2.33

表 5 単語の内の誤記の位置と詰まり [個,%]

結合位置 音声数 詰まった音声数 詰まり発生率
- 5 0 -

2 56 12 21.43

3 25 3 12.00

4 8 1 12.50

5 5 2 40.00

6 1 0 0.00

合計 100 18 -

4.4 発話特徴分析
中央に結合の誤記を加えた際の，発話特徴について分析

する．人間の音声データを 100個聞き，削除された文字の
位置と詰まりの関係を表 5に示す．
削除された文字の位置が，単語内で誤記が発生した文字

の位置を表す．加えられた誤記は結合であるが，削除した
文字に着目する．音声数は，削除された文字の位置に誤記
が加えられた文章を読み上げる音声の総数を示す．詰まっ
た音声数は，誤記によって音声が詰まった音声の総数を示
す．詰まり発生率は，各結合位置の音声数に対する詰まり
音声数の割合である．
日本語文章を読み上げる際の停留時間と眼球移動距離

の長さは，平均約 0.25 秒と平均約 5 文字と分かってい
る [13] [14]．音声化により眼球移動距離は短くなる [15]た
め，3文字目は文節を読み始めから認識される可能性が高
い．見慣れない文字列でも，認識していればそのまま読み
上げることができるため，詰まる確率が低いと言える．文
節内の 5文字目が削除された場合，詰まりが確認されたの
は 2個であった．確率で表すと，40.00%である．詰まる確
率が一番高いのは，停留から動いた後に読み始める文字で

あるからと考えられる．黙読の場合は，文字列を認識でき
れば読み飛ばすことができるため，タイポグリセミア現象
が発生しやすい．しかし，音読の場合は，文字列を正確に
認識した上で発音しなければいけない．音声化により，眼
球移動距離は短くなり，5文字より短くなる．停留から動
き出した瞬間に読み慣れない文字を認識することなるた
め，詰まりが発生していると考えられる．ただし，文節内
の 5文字目が削除された音声が少ないことには留意する必
要がある．

4.5 評価方法

文字認識特徴分析と発話特徴分析から特定された，認証
文章の文章特徴により人間と Botを識別できることを評価
する．識別は，流暢性評価により行う．流暢性評価は，詰
まり位置と音素時間の 2つの観点から評価する．人間が誤
記を含んだ文章を読み上げた場合，発話リズムが崩れるこ
とが考えられる．そのため，入力された音声の発話リズム
が乱れていれば人間と識別する．
詰まり位置は，誤記の文字の直前または，誤記を含む文

節の直前で無音区間があることを評価する．無音区間の検
出は，次の手続きでサンプルごとに量的基準を設定し，こ
の基準に従って検出されたものを「無音」とみなす [16]．
( 1 ) 音声データをサンプリングレート 44.1kHzで離散化
( 2 ) スペクトルサブトラクション法により雑音を除去
( 3 ) 短時間エネルギーを計算
( 4 ) 平均短時間エネルギーの 10%を閾値に設定
無音区間を検出した際に，開始時刻と終了時刻を記録す

る．無音区間終了時刻の 1 秒前から 2 秒間の音声を切り
出し，Whisper large-v2を用いて文字起こしを行う．文字
起こしした中に，誤記の箇所の文字が含まれていれば，詰
まっていると判断する．
音素時間は，誤記の文節とその他の文節における，各音

素の平均時間のズレを評価する．音素ごとにかかった時間
を測るために日本語に対応した大語彙連続音声認識エンジ
ンの Julius [17]を用いる．Juliusは，音声と読み上げた文
章 (ひらがな)を用意し，音素セグメンテーションキットで
音声ファイルを音素単位の forced alignmentをすることに
より，音素ごとの時間の計測する．
流暢性自動評価には，各音素の平均時間との差が有効で

あることがわかっている [18]．そのため，音声全体の平均
音素時間と誤記を含む文節の平均音素時間の差を評価する
ことで，誤記の影響を評価することが可能と考えられる．
音素時間は，平均音素時間よりも誤記を含む文節の平均音
素時間が長い場合，流暢ではなくなったと判断する．
評価実験では，詰まったと判断される，または流暢では

ないと判断された場合に，人間であると識別する．
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図 4 提案システムの正解率 (VOICEVOX)

4.6 評価結果
提案システムに，人間と Botの音声をランダムに 100回

入力した結果を，図 4に示す．真陽性が 50，偽陽性が 6，
偽陰性が 20，真陰性が 24であった．そのため，流暢性評
価ブロックの正解率は 74%である．

4.7 考察
流暢性評価ブロックの識別率は 74%であり，提案システ
ムの実現可能性は高いと考えられる．しかし，Botを人間
と識別する確率が，Botを Botと識別する確率とほぼ同じ
のため，改善が求められる．CAPTCHA認証において重
要なことは，Botを人間と判断しないことである．提案シ
ステムでは，誤って Botを人間と判断する可能性が高い．
そのため，Botを人間と判断しない識別要素が必要である
と考える．具体的には，誤記の修正度合いを識別要素に加
えることである．人間と LLMで誤記の修正の仕方は異な
ると考えられる．人間的修正の仕方と LLM的修正の仕方
を識別可能にすること，提案システムの実現可能性を高め
ることが期待される．

5 おわりに
本研究では，誤記を活用した新たな発話型属性認証シス

テムを提案した．人間と Botが誤記を含む文章を読み上げ
た音声データを収集し，発話特徴の分析を行った．分析の
結果，誤記による非流暢性を利用した属性認証の有効性を
示した．さらに，文節の中央 5文字目に結合の誤記を加え
た文章が，人間と Botを識別する提示文として適してい
ることを明らかにした．提案システムを用いた識別実験で
は，74%の精度で両者を判別可能であることを確認した．
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