
システムコールの監視を利用した
メモリフォレンジックによる鍵回復手法の提案

樋口 諒1,a) 稲村 浩2 石田 繁巳2

概要：近年，ランサムウェアによる被害が増加しており，その対策が必須となっている．警察庁によると，
バックアップの取得によりランサムウェア暗号化攻撃から被害直前の水準まで復元できたケースは 3割未
満である．バックアップを利用しない手法としてメモリフォレンジックによる鍵の回復手法が知られてい
る．この手法は，ランサムウェアが使用しているメモリから暗号鍵を取得し被害ファイルを復元する．メ
モリフォレンジックではメモリ上に暗号鍵が存在するタイミングでメモリを調べることが重要である．本
稿では，鍵の復元可能性の向上を目的とし，囮ファイルに対する writeシステムコールを監視することで，
ランサムウェアプロセスを検知・特定し，ランサムウェアプロセスを停止させメモリダンプする手法を提
案する．囮ファイル 1つに対して暗号化攻撃を行い，ランサムウェアプロセス停止の有無によって復元の
可否を確認することで提案手法を評価した．その結果，プロセスを一時停止させることでメモリ内容の一
貫性を確保した状態でのメモリダンプが可能となり，暗号鍵を回復することが確認できた．しかしながら，
囮ファイルへの writeシステムコールの監視をすり抜けるケースも見られた．

1. はじめに
近年，ランサムウェアによる被害が増加しており，脅威

となっている．警察庁サイバー警察局によると，令和 6年
における企業や団体に対するランサムウェアによる暗号化
攻撃は 222件発生しており，高水準で推移している [1]．
ランサムウェア被害拡大の背景には，ランサムウェアの

開発・運営を行う者が攻撃実行者にランサムウェアを提供
し，見返りとして金銭を要求するRaaS（Ransomware as a

Service）による影響が強く出てきている．これにより，専
門知識を持ない者でもランサムウェアを手にしやすく，攻
撃を行いやすくなった．
ランサムウェア被害の対策として，機械学習によるラン

サムウェアの早期検知手法が存在する [2]．しかし，ランサ
ムウェアを早期検知し暗号化攻撃を停止しても，暗号化さ
れたファイルは存在した．これは，暗号化攻撃の高速化な
どが要因として挙げられる [3]．そのため，ランサムウェ
アを検知する手法と合わせて，被害から復元する手法も必
要となってくる．
ランサムウェア被害などのインシデントからの回復とし

て多くの組織や企業でバックアップを取得している．実際，
警察庁サイバー警察局によると，ランサムウェア被害に
1 公立はこだて未来大学大学院システム情報科学研究科
2 公立はこだて未来大学システム情報科学部
a) g2125068@fun.ac.jp

あった組織や企業のうち約 9割がバックアップを取得して
いた．しかし，ランサムウェア暗号化攻撃から被害直前の
水準まで復元できた組織や企業は 3割にも満たない．[1]．
これは，バックアップの運用不備やバックアップそのもの
の暗号化などが原因として挙げられている．このことから
バックアップは過信できないため，バックアップを利用し
ない復元手法も重要であると言える．
バックアップを利用しない復元手法として，メモリフォ

レンジックによる鍵回復手法が存在する．鍵回復手法とは，
ランサムウェアなどが暗号化に用いた暗号鍵を何らかの方
法で取得することで，暗号化されたファイルなどを復元す
る手法である [4]．鍵回復手法には様々な手法が存在する
が，その 1つに，ランサムウェアが利用するメモリ内容を
解析することで鍵回復を行う「メモリフォレンジック」が
存在する．メモリフォレンジックによる鍵回復手法では，
ランサムウェアが動作している間にメモリダンプし，取得
したメモリイメージを解析することで暗号鍵を取得して
復元する．メモリフォレンジックによる鍵回復手法ではメ
モリダンプするタイミングが重要となってくる．なぜなら
ば，メモリ上に暗号鍵が存在しないタイミングでメモリダ
ンプし解析しても，意味がないためである．
本稿では，メモリフォレンジックによる鍵回復手法の復

元可能性の向上を目的とする．そのためには，ランサム
ウェア暗号化攻撃の最中にメモリダンプする必要がある．

― 600 ―

「マルチメディア，分散，協調とモバイル
(DICOMO2025)シンポジウム」 令和7年6月

© 2025 Information Processing Society of Japan

ランサムウェア暗号化攻撃の検知に，囮ファイルと呼ばれ
る正規のユーザが操作しない前提を置いたファイルを利用
する．囮ファイルへのアクセスを監視することで，囮ファ
イルが操作された際にランサムウェア暗号化攻撃を検知す
ることができる．評価では，擬似ランサムウェアによって
暗号化攻撃を行い，囮ファイル監視の成功と復元の可否に
より評価する．
本稿の構成は以下の通りである．第 2章では，本研究に

関わる関連研究について紹介する．第 3章では，提案手法
について述べた後，第 4章で評価実験について述べる．最
後に，第 5章でまとめとする．

2. 関連研究
本章では，本研究に関連する，「メモリフォレンジックに

よる鍵回復の研究」，「囮ファイルによるランサムウェア暗
号化攻撃の防御に関する研究」，「囮ファイルを利用したメ
モリフォレンジックによる鍵回復の研究」の 3つの研究に
ついて紹介する．

2.1 メモリフォレンジックによる鍵回復の研究
Daviesらは，ランサムウェア検体の解析により，ランサ

ムウェアの内部処理によるメモリの変化の時系列であるタ
イムラインを作成することでメモリダンプのタイミングを
推定する手法を提案した [5]．結果として，取得した暗号
鍵により攻撃を受けたファイルを復元できていた．タイム
ラインの作成は，実際にランサムウェア検体を動作させ，
メモリの状態を監視することで作成していた．
この手法の課題として，未知のランサムウェアによる暗

号化攻撃に対応できないことが挙げられる．解析とタイム
ラインの作成が行われていない未知のランサムウェアに対
しては，暗号鍵がメモリ上に保持されているタイミングが
不明となるため，暗号鍵がメモリ上に保持されているタイ
ミングがわからずに，メモリ上に暗号鍵を保持しているタ
イミングとメモリダンプするタイミングが重ならず，暗号
鍵を含んだメモリダンプを取得できない可能性がある．

2.2 囮ファイルによるランサムウェア暗号化攻撃の防御
に関する研究

田中らは，囮ファイルを利用したランサムウェア暗号化
攻撃を検知し遅延する手法を提案した [6]．この研究では，
囮ファイルを設置し監視することでランサムウェア暗号
化攻撃を検知し，暗号化攻撃が行われている間に大量の囮
ファイルを作成し設置することで，暗号化攻撃を遅延させ
た．結果として，多くのランサムウェア検体に対して暗号
化攻撃の遅延することができていた．これにより，利用者
は攻撃に気付くことでランサムウェアを停止させるなど対
処の機会が得られる．
この手法の課題として，囮ファイル暗号化以前に暗号化

されてしまった被害ファイルを復元できない点である．こ
の手法では，ランサムウェア検体を解析することで，ラン
サムウェアが暗号化を開始するディレクトリを割り出し囮
ファイルの設置を行なっている．調査した結果として，ラ
ンサムウェアが暗号化を開始するディレクトリはランサム
ウェアごとに異なっていた．そのため，囮ファイルが設置
されていないディレクトリから暗号化攻撃されてしまう
と，囮ファイルへのアクセスによってランサムウェアを検
知した時点で既に暗号化された被害ファイルを復元する手
段はない．

2.3 メモリ領域局所化と CPU使用率を制限する手法
著者らは，バックアップを用いない暗号化攻撃からの復

元を目的に研究を進めてきた．確実な回復のために暗号鍵
を含むと思われるメモリダンプの取得回数を増やすことを
課題として，囮ファイルの監視によりランサムウェアプロ
セスを検知・特定し，メモリ領域局所化とランサムウェア
プロセスの CPU使用率を制限する手法を提案した [7]．
この手法では囮ファイルを監視することにより，ランサ

ムウェアプロセスの Process ID (PID) を特定する．PID

を特定し Linuxに存在する/procディレクトリからメモリ
イメージを取得することで，ランサムウェアプロセスが使
用しているメモリ領域のみをダンプした．/procディレク
トリ下の/pid/mapsからは，プロセスの仮想メモリ空間の
アドレスが取得できるため，これを用いて/proc/pid/mem

にアクセスし，取得した仮想メモリ空間のアドレスが示す
領域のみを取得することで，メモリ領域局所化によるメモ
リダンプを実装した．これにより，全メモリダンプする既
存のツール*1 と比較して，メモリダンプする領域が縮小し
たため，単位時間あたりのメモリダンプ可能な回数を増加
させた．
一貫性のあるメモリダンプ取得のため，ランサムウェア

の動作によるメモリの変更を緩慢にすることを狙って，ラ
ンサムウェアプロセスの CPU使用率を制限した．囮ファ
イルの監視により PIDを特定することでランサムウェア
プロセスの CPU使用率を制限することが可能になった．
cgroup-v2により予め作成されたグループの中に，ランサ
ムウェアプロセスの PIDを追加することで CPU使用率を
制限し，ランサムウェア暗号化処理時間が増加することで，
メモリダンプ回数を増加させていた．
この手法には 2つの課題が存在する．1つ目は，囮ファ

イルの監視によるランサムウェアプロセスの検知・特定に
関する実装について詳細な設計がなく論文では言及してい
ない点である．特に，この提案手法ではランサムウェアプ
ロセスの PIDの取得が重要となってくるが，具体的な実装
について明らかになっていない．
*1 504ensicsLabs: LiME: Linux Memory Extractor, https:

//github.com/504ensicsLabs/LiME, Accessed: 2025-01-20.

― 601 ―
© 2025 Information Processing Society of Japan

2つ目は，ランサムウェアプロセスを停止させずに並行
してメモリダンプしている点である．一般的にマルウェア
では，メモリフォレンジックによる解析に対策する手法が
知られている [8]．これはランサムウェアにも言えること
であり，メモリ上に暗号鍵が読み取り可能な状態ではなる
べく存在しないようにしていることが，Daviesらの研究で
明らかになっている [5]．そのため，ランサムウェアプロ
セスを停止せずにメモリダンプすると，メモリの状態が変
化してしまい，仮に多数の被害ファイルの中で囮ファイル
の暗号化が処理の最後に行われた場合には，検知からメモ
リダンプまでの経過時間の間でランサムウェアが暗号鍵を
メモリ上から削除してしまうことが考えられる．この場合
にはメモリダンプしても鍵を発見できない．

3. 提案手法
本稿では，囮ファイルを監視することによるランサム

ウェアプロセスの検知・特定と，ランサムウェアプロセス
の停止によるメモリ情報の一貫性を保ったメモリダンプ手
法を提案する．提案手法の全体の流れを図 1に示す．提案
手法では，まず，囮ファイルを監視する．正規のユーザや
プロセスがアクセスすることはないファイルであるため，
ここにアクセスがあれば異常と見なせる．囮ファイルへの
アクセスからランサムウェアによる囮ファイルに対する暗
号化攻撃を検知し，ランサムウェアプロセスを特定する．
その後に，ランサムウェアプロセスを停止させ，停止して
いる間にメモリダンプを行い，取得したメモリイメージか
ら暗号鍵を取得する．暗号鍵の正誤判定には，囮ファイル
の平文が既知であることを利用する．鍵候補によって復元
した結果が囮ファイルの平文と一致しているかどうかで正
誤判定する．
本章では，図 1の「 1○囮ファイルの監視」，「 3○検知・特
定」，「 4○ランサムウェアプロセスの停止」に関する具体的
な実装について述べる．

3.1 囮ファイルの監視による検知・特定
本節では，図 1の「 1○囮ファイルの監視」と「 3○検知・

特定」についての具体的な実装について述べる．
図 1の「 1○囮ファイルの監視」から「 4○ランサムウェ
アプロセスの停止」までの具体的な流れを図 2に示す. ア
ルゴリズム 1は，「 1○囮ファイルの監視」から「 4○ランサ
ムウェアプロセスの停止」までの実装を示している．「 1○
囮ファイルの監視」は，1. カーネル空間側で全ての write

システムコールを監視，2. システムコールを呼び出したプ
ロセスの PIDをユーザ空間に送信，3. PIDが持つファイ
ルディスクリプタの中に囮ファイルが存在するか確認の 3

ステップによって行う．
囮ファイルへのアクセスの監視について writeシステム

コールの発行をトレースすることで，囮ファイルへ書き込

みをしたランサムウェアプロセスの検知・特定を行う．プ
ロセスがファイルに対して実際のデータを書き込む際に，
writeシステムコールは発生する．このため，writeシス
テムコールの監視によりファイル内容の変更が発生する直
前のタイミングを正確に捉えることが可能である．また，
readシステムコールなどは悪意のあるプロセスかどうか
の判定が難しい．以上の点から，writeシステムコールの
監視によってランサムウェアプロセスの検知・特定を実現
する．
write システムコールの監視には extended Berkeley

Packet Filter (eBPF)を利用する．eBPFは，ネットワー
クのパケットフィルタリングを目的に利用されていた BPF

を拡張し，Linuxカーネル内での様々なイベントを制御で
きるようにしたものである．eBPFでは，カーネル空間内
で特定ファイルへのアクセスのみをフィルタリングする機
能がそのままでは利用できない．そこで本稿では，全ての
writeシステムコールエントリーの監視をカーネル空間側
で行い，writeシステムコールエントリーを行ったプロセ
スの PID情報をユーザ空間に送信し，ユーザ空間側におい
て送信された PIDが囮ファイルのファイルディスクリプ
タを保持しているか判別することで，囮ファイルに対する
writeシステムコールエントリーを監視する．
カーネル空間とユーザ空間の実装には，BPF Compiler

Collection (BCC) を利用する [9]．BCC とは，効率的な
カーネルトレースおよび操作プログラムを作成するための
ツールキットであり，eBPFを利用している．BCCを利
用することにより，ユーザ空間の Pythonスクリプト内に
eBPFコードを埋め込むことができ，Pythonプログラムの
実行時に eBPFコードがコンパイルされカーネル空間内で
実行される．また，カーネル空間とユーザ空間からアクセ
スできる共有データ構造の定義などを行うことができる．
これにより，カーネル空間側で全ての writeシステムコー
ルをフックし，writeシステムコールを要求したプロセス
の PIDをユーザ空間側に送信する．
Pythonにより実装したユーザ空間側では，カーネル空
間から送られてきた PIDを元に，プロセスが保持している
ファイルディスクリプタ情報を確認する．PIDからプロセ
スが持つファイルディスクリプタの確認には，Linuxに存
在する/procディレクトリ下に存在する/proc/pid/fdを
利用する．Linuxに存在する/procディレクトリには，プ
ロセスに関する情報が PIDにより管理されており，その
中に存在する/proc/pid/fdには，プロセスが保持してい
るファイルディスクリプタに関するシンボリックリンクが
保持されている．これを利用することで，プロセスの PID

を取得により，プロセスが保持しているファイルディスク
リプタのシンボリックリンクを獲得し，囮ファイルのファ
イルディスクリプタを保持しているのかを判定できる．も
しも，囮ファイルのァイルディスクリプタを保持している

― 602 ―
© 2025 Information Processing Society of Japan

囮

①囮ファイル監視

メモリ

②暗号化

③検知
特定

④ランサムウェア
プロセス停止

⑤メモリ
ダンプ

⑥鍵探索

図 1: 提案手法の流れ

場合，そのプロセスがランサムウェアプロセスであると検
知できる．この時，既に PIDは囮ファイルにアクセスして
いるのか確認するために取得しているため，既存研究で提
案されたメモリ領域局所化したメモリダンプや，プロセス
停止を行うことができる．

3.2 ランサムウェアプロセス停止のメモリダンプ
本節では，図 1の「 4○ランサムウェアプロセスの停止」
についての具体的な実装について述べる．
本稿では，eBPFを利用した囮ファイルの監視によるラ

ンサムウェアプロセスの検知・特定により，ランサムウェ
アプロセスの PIDを取得している．そのため，メモリダン
プする際にランサムウェアプロセスを停止させ，一貫性の
あるメモリ情報を取得することができる．ランサムウェア
プロセスの停止には，SIGSTOPシグナルを利用する．シ
グナルは，プロセスに対して非同期的に送信される通知機
構であり，ユーザからの操作によって，プロセスを制御す
ることができる．本稿では，ランサムウェアプロセスの停
止に SIGSTOPシグナルを送ることで，一時停止させる．
これは，ランサムウェアプロセスを強制的に一時停止させ
たいので，シグナルブロックができない SIGSTOPを採用
する．SIGSTOPシグナルは，writeシステムコールを要
求したプロセスが囮ファイルのファイルディスクリプタを
保持しているか確認をしているユーザ空間側からランサム
ウェアプロセスに送信する．
図 1の「 5○メモリダンプ」と「 6○鍵探索」には，著者ら
が提案したメモリ領域局所化手法を利用して行う [7]．

4. 評価
本章では，提案したシステムの評価について記述する．

Algorithm 1 囮ファイル書き込み検知時のメモリダンプ
1: function MonitorAndDump(TARGET FILE)

2: CURRENT PID ← getpid

3: Initialize eBPF program with trace write entry()

4: Attach eBPF to x64 sys write

5: while true do

6: event← wait for perf event

7: pid← event.pid

8: if pid == CURRENT PID then

9: continue

10: end if

11: fd paths← get fd paths(pid)

12: if TARGET FILE ∈ fd paths then

13: SendSignal(pid, SIGSTOP)

14: regions← get memory maps(pid)

15: for all (start, end, type) ∈ regions do

16: output← pid type .bin

17: dump memory(pid, start, end, type, output)

18: end for

19: SendSignal(pid, SIGCONT)

20: end if

21: end while

22: end function

本稿では，囮ファイル監視によるランサムウェアプロセス
の検知・特定と，ランサムウェアプロセスの停止によるメ
モリ情報の一貫性を持ったメモリダンプの提案を行った．
提案手法の実現可能性と有効性を確認するために，疑似ラ
ンサムウェアによる暗号化攻撃からの被害ファイルの復元
可否を，ランサムウェアプロセス停止の有無で比較するこ
とにより評価した．被害ファイルの復元にはメモリダンプ
からの暗号鍵の取得が必要であり復元成功回数の比較によ
り手法の有効性を確認する．
同時に，提案した囮ファイル監視によるランサムウェア

プロセスの検知手法についてよる囮ファイルの監視の成否

― 603 ―
© 2025 Information Processing Society of Japan

カーネル空間
(eBPF)

ユーザ空間

write
システムコール

囮ファイルに
writeシステムコール

プロセス停止
メモリダンプ

• 全てのwriteシステムコールをトレース
• writeシステムコールしてきたPIDをユーザ空間に送信

PIDを送信

囮ファイルへの
アクセスを確認

• PIDから囮ファイルへの アクセスを確認
• プロセス停止要求しメモリダンプ

図 2: 囮ファイル監視システムの流れ

も評価した．実装上，監視部が通知された PIDから囮ファ
イルアクセスの有無を確認する前にランサムウェアプロセ
スがファイル処理を終えてしまう可能性がある.このよう
な監視のすり抜け状況の発生の有無を確認する．
実験では，eBPFを利用した囮ファイルの監視によるラ

ンサムウェアプロセスの検知・特定までを共通に行ない，
その後のメモリダンプ処理の際に，先行研究 [7]による，停
止させずランサムウェアプロセスの CPU使用率を制限す
る場合と，提案手法によるランサムウェアプロセス停止の
場合とで，復元の可否を確認した．

4.1 実験環境
本稿では，ホストOSのWindows 11上にVirtualBoxに
よってUbuntu 22.04を仮想マシンとしてインストールし実
験を行った．ホストOSであるWindows 11にVirtualBox

を用いて Ubuntuを仮想化することで，テストや開発環境
を独立して動作させた. 仮想マシンには 4GBのメモリと 1

つのコアを割り当てた．表 1にホスト OS及び仮想マシン
の仕様を示す．

表 1: ホスト OSおよび仮想マシンの仕様
項目 仕様
ホスト OS Windows 11

ホストメモリ 16GB

ホスト CPU Intel Core i7

仮想マシン OS Ubuntu 22.04

仮想メモリ 4GB

仮想 CPU コア数 1

4.2 囮ファイル
囮ファイルは先行研究を参考にし，囮ファイルのファイ

ルサイズを 2KBに設定した [6, 7]. ファイルの内容は乱数
で構成した平文を 2KB分割り当てた. 本実験では，攻撃対
象としたディレクトリに囮ファイル 1個を設置し，暗号化
攻撃を行った．

4.3 擬似ランサムウェア
実験では，実際のランサムウェアの動作を模した擬似ラ

ンサムウェアを利用した．擬似ランサムウェアは，先行研
究を参考に Python により実装した [6, 7]．擬似ランサム
ウェアは以下の手順で暗号化攻撃を行うようにした．
(1) 暗号化対象ファイルを読み取る
(2) 暗号化対象ファイルを暗号化する
(3) 暗号化後データを書き込む
ランサムウェアの暗号化アルゴリズムはAES方式とし，鍵
長は 256 bitとした. 擬似ランサムウェアは暗号化終了と同
時に暗号鍵をメモリ上から破棄して直ちに終了させた．

4.4 ランサムウェアプロセス停止の有無による鍵回復の
評価

囮ファイル 1 つに対して擬似ランサムウェアによって
暗号化攻撃を行い，eBPFによる囮ファイルの監視による
ランサムウェアプロセスの検知・特定下の中で，ランサム
ウェアプロセス停止する場合と，ランサムウェアプロセス
を停止せずに CPU使用率制限する場合とで，復元の可否，
メモリダンプの可否などを比較することで評価する．
具体的には，CPU使用率上限ごとに復元成功回数，ダン

― 604 ―
© 2025 Information Processing Society of Japan

プ成功回数，ダンプ部分成功回数，監視すり抜け回数，ダ
ンプ失敗回数によって示す．ダンプ部分成功回数は，メモ
リダンプ処理が途中まで成功した回数を示す．監視すり抜
け回数は，eBPFによる囮ファイルへのアクセス監視が失
敗した回数を示す．ダンプ失敗回数は，監視によりランサ
ムウェア暗号化攻撃を検知することはできたが，メモリダ
ンプが間に合わなかった回数を示す．ダンプ成功回数は想
定されるサイズでメモリダンプが終了したことを示す．た
だしダンプ内容の一貫性が維持されているかどうかはここ
では問わない．メモリを走査して得た鍵回復の成功回数で
評価する．
ランサムウェアプロセスを停止せず CPU 使用率を制

限する場合では，先行研究を参考に CPU 使用率制限を
cgroup-v2により行い，CPU使用率の上限の設定は先行
研究と同様に，100%，80%，60%，40%，20%，10%，1%

に設定する [7]．CPU使用率の制限は，最初に cgroup-v2

に制限するプロセスを格納するディレクトリを作成してお
き，提案手法でランサムウェアプロセスを停止するために，
ランサムウェアプロセスに対して SIGSTOPシグナルを送
信する代わりに，CPU使用率を制限するランサムウェアプ
ロセスを作成したディレクトリに追加することで行った．
プロセスを停止する場合と CPU使用率を制限する場合
の各設定のそれぞれで 20回試行した．
4.4.1 プロセスを停止しない場合の結果
表 2に，CPU使用率を制限する場合に対して，擬似ラ

ンサムウェアにより 1 つの囮ファイルを暗号化攻撃する
試行を 20回行った結果を示す．プロセスを停止せず CPU

使用率の制限によって低速で実行を継続させつつメモリダ
ンプする場合では，後述する eBPFによる囮ファイルの監
視のすり抜け以外に，メモリダンプ処理が間に合わずに復
元できないケースが少数ながら存在した．これは，プロセ
スを停止しておらず動作し続けていることが原因である．
CPU使用率制限してもプロセスは動作し続けてしまうた
め，ランサムウェアプロセスが鍵を含む領域のメモリダン
プ処理の完了前に実行を終了してしまい，メモリダンプが
間に合わなかったためである．また，メモリダンプ処理が
ランサムウェアプロセス終了前に間に合ったが，メモリイ
メージ内に暗号鍵が存在せずに復元に失敗するケースも
存在した．こちらも同様に，ランサムウェアの検知が遅く
なってしまうと，仮にメモリダンプできたとしても，既に
暗号鍵をメモリ上から破棄してしまっているために復元で
きなかった．制限した CPU使用率による結果の違いがあ
まりみられなかったのは，実験では 2KBの囮ファイル 1

つのみに対して攻撃を行っているため，CPU使用率制限
による影響が小さかったことが考えられる．
4.4.2 提案手法によるプロセス停止を用いた結果
提案手法にてランサムウェアプロセスを停止させたこと

によって，メモリダンプが間に合わないケースは発生せず，

ファイルの復元にも成功していることからダンプ情報の一
貫性も得られたと考えられる．
提案手法に対して擬似ランサムウェアにより 1 つの囮
ファイルを暗号化攻撃した結果を表 3に示す．プロセスを
停止しメモリダンプする提案手法では，ランサムウェア暗
号化攻撃の検知が行われた場合ではメモリダンプと復元が
全て成功した．プロセスを停止する提案手法では，検知し
た際に直ちにプロセスを停止させるため，メモリ状態が変
化せずにメモリダンプできたことから，途中までの部分成
功や失敗が存在しなかった．
今回の実験では，先行研究によるメモリ領域局所化を利

用したメモリダンプを利用したが，ランサムウェアがマル
チプロセスにより暗号化を行う場合や，より詳細に解析を
行う場合において，単一プロセスのメモリ領域をダンプす
るより全てのメモリ領域をダンプする方が良いことがあ
る．全てのメモリ領域をダンプする際には，CPU使用率
制限により遅延してもダンプする領域が大きくてメモリダ
ンプが間に合わないケースが存在する可能性があるため，
今回のようにランサムウェアプロセスを停止しメモリダン
プすることが効果的である．

4.5 提案手法による囮ファイル監視を用いた検知の評価
先行研究の手法と提案手法に共通して囮ファイルの監視

に失敗しすり抜けるケースが存在した．表 2と表 3に示す
ように，ランサムウェアプロセスを停止する場合とランサ
ムウェアプロセスの CPU使用率を制限する場合のそれぞ
れで，囮ファイルの監視ををすり抜ける場合が見られた．
これは，図 2においてユーザ空間側で/proc/pid/fdの情
報を確認し囮ファイルかどうか判定する処理にかかる前に
囮ファイルのファイルディスクリプタをランサムウェアプ
ロセスが消去していることで発生している．

5. 終わりに
ランサムウェアによる暗号化攻撃に対するバックアップ

を利用しない復元手法としてメモリフォレンジックによ
る鍵回復手法に着目した．鍵の復元可能性の向上を目的と
し，ランサムウェアプロセスの検知・特定方法と，メモリ
情報の一貫性を保ったメモリダンプ方法の実現を課題とし
た．eBPFによる囮ファイルの監視によるランサムウェア
プロセスの検知・特定機能の実装方法と，プロセス停止に
よるメモリダンプ手法を提案した．
先行研究 [7]では，囮ファイル監視によりランサムウェ

ア暗号化攻撃を検知・特定し，CPU使用率制限によりメモ
リダンプする手法を示したが，本稿では，メモリフォレン
ジックによる鍵回復の可能性を向上させるために，プロセ
スを停止させメモリダンプする手法とした．ランサムウェ
アが鍵をメモリ上に保持しているタイミングでプロセスを
停止し，メモリダンプするために，囮ファイルへの write

― 605 ―
© 2025 Information Processing Society of Japan

表 2: CPU制限ごとのメモリダンプ結果集計
CPU 使用率上限 (%) 復元成功回数 (回) ダンプ成功回数 (回) ダンプ部分成功回数 (回) 監視すり抜け回数 (回) ダンプ失敗回数 (回)

1% 10 12 0 6 2

10% 10 11 0 8 1

20% 10 11 1 8 0

40% 7 9 4 6 1

60% 11 10 3 6 1

80% 9 10 1 6 3

100% 8 9 1 7 3

表 3: プロセス停止によるメモリダンプ結果集計
手法 復元成功回数 (回) ダンプ成功回数 (回) ダンプ部分成功回数 (回) 監視すり抜け回数 (回) ダンプ失敗回数 (回)

プロセス停止 15 15 0 5 0

システムコール発行のタイミングでプロセスを停止する手
法を提案した．
提案手法にてランサムウェアプロセスを停止させた場合

と，先行研究での完全には停止せず CPU使用率制限する
場合において，囮ファイル 1つに対して擬似ランサムウェ
アにより暗号化攻撃し，復元の可否を確認することで評価
を行った．同時に，提案手法による囮ファイルの監視が失
敗し，ランサムウェアによる暗号化攻撃を見逃がすケース
が存在しないかの確認も行った．
提案手法にてランサムウェアプロセスを停止させたこと

によって，メモリダンプが間に合わないケースは発生せず，
ファイルの復元にも成功していることからダンプ情報の一
貫性も得られたと考えられる．しかし，先行研究の手法と
提案手法に共通して囮ファイルの監視に失敗しすり抜ける
ケースが存在した．今後は，監視のすり抜けを減らす方法
などの検討を進める．

参考文献
[1] 警察庁サイバー警察局. 令和６年におけるサイバー

空間をめぐる脅威の情勢等について, March 2025.
https://www.npa.go.jp/publications/statistics/

cybersecurity/data/R6/R06_cyber_jousei.pdf.

[2] Daniel Morato, Eduardo Berrueta, Eduardo Magaña, and
Mikel Izal. Ransomware early detection by the analysis
of file sharing traffic. Journal of Network and Computer
Applications, Vol. 124, pp. 14–32, 2018.

[3] Splunk. Gone in 52 seconds and 42 minutes: A compar-
ative analysis of ransomware encryption speed. https:

//www.splunk.com/en_us/blog/security/gone-

in-52-seconds-and-42-minutes-a-comparative-

analysis-of-ransomware-encryption-speed.html,
2024.

[4] Pranshu Bajpai, Aditya K Sood, and Richard Enbody.
A key-management-based taxonomy for ransomware. In
2018 APWG Symposium on Electronic Crime Research
(eCrime), pp. 1–12. IEEE, 2018.

[5] Simon R Davies, Richard Macfarlane, and William J
Buchanan. Evaluation of live forensic techniques in ran-
somware attack mitigation. Forensic Science Interna-

tional: Digital Investigation, Vol. 33, p. 300979, 2020.

[6] 田中智也, 小池一樹, 小林良太郎, 加藤雅彦ほか. ダミー
ファイルを利用した暗号化型ランサムウェア対策システム
の実装. コンピュータセキュリティシンポジウム 2019 論
文集, Vol. 2019, pp. 163–169, 2019.

[7] 樋口諒, 稲村浩, 石田繁巳. ランサムウェア暗号化攻撃遅延
とメモリ領域局所化を利用した鍵回復手法の初期検討. 情
報処理学会第 87回全国大会講演論文集, 2025.

[8] Ralph Palutke, Frank Block, Patrick Reichenberger, and
Dominik Stripeika. Hiding process memory via anti-
forensic techniques. Forensic Science International: Dig-
ital Investigation, Vol. 33, p. 301012, 2020.

[9] IO Visor Project. BCC: BPF Compiler Collection, 2025.
https://github.com/iovisor/bcc.

― 606 ―
© 2025 Information Processing Society of Japan

